论文部分内容阅读
高光谱遥感已经成为快速诊断作物水氮状态的一种有效手段。然而,传统的回归方法和机器学习往往难以挖掘高光谱的全部信息,深度神经网络又通常需要大量的训练数据,因此本研究试图探索在少量数据条件下构建深度学习模型并实现叶片氮含量的精准估计。通过在湖北省监利县开展了连续2年不同氮素胁迫水平的水稻试验,测量了作物全生育期内的216组冠层光谱和叶片氮含量。基于一阶导数光谱,本文构建了一种新的深度学习模型(深度森林DF)来进行叶片氮含量的反演,并与2种经典机器学习模型(随机森林RF和支持向量机SVM)和一种深度神经网络模型