高灵敏度宽频带阵列式仿生矢量水听器研究

来源 :微纳电子技术 | 被引量 : 0次 | 上传用户:Gerryliu1984
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对MEMS仿生矢量水听器灵敏度和频带相互制约,不能同时满足宽频带高灵敏度测量的问题,在单个MEMS矢量水听器的基础上,设计了由四个单元构成的2×2单片集成微敏感结构阵列,实现了水听器的高灵敏度和宽频带。通过理论分析和ANSYS仿真分析,确定阵列微结构的尺寸,采用硅微机械加工工艺完成了阵列微结构的加工,最后在水声一级计量站对封装好的水听器进行了灵敏度和指向性校准测试。测试结果表明:该阵列式仿生矢量水听器未加前置放大时灵敏度达到-189 dB,频响范围20~5 000 Hz,具有良好的“8”字型指向性。 The sensitivity and frequency band of MEMS bionic vector hydrophone are restricted by each other, and can not meet the requirement of broadband high-sensitivity measurement at the same time. Based on a single MEMS vector hydrophone, a 2 × 2 monolithic integrated micro Sensitive structure array, to achieve a high sensitivity and wideband hydrophone. Through the theoretical analysis and ANSYS simulation analysis, the size of the array micro-structure is determined, and the micro-structure of the array is finished by using the silicon micromachining process. Finally, the sensitivity and directivity of the hydrophone are measured at a water- Calibration test. The test results show that the array biomimetic vector hydrophone has a sensitivity of -189 dB without preamplifier and a frequency response range of 20-5000 Hz, which has a good “8” font orientation.
其他文献
施耐德电气公司作为一个专业致力于电气工业的跨国公司 ,拥有悠久的历史和强大的实力 ,输配电、工业控制和自动化是施耐德齐头并进的两大领域 ,其产品遍布电力、基础设施、建
The controllable growth of large area band gap engineered-semiconductor nanowires (NWs) with precise orientation and position is of immense significance in the
结合扫描隧道显微镜(STM)成像实验和第一性原理原子级模拟计算的方法已经成为材料界面表征的重要手段。超高真空条件下的STM可用于直接观察单原子等微观结构,但其成像原理还
本文主要通过对计算机发展历程进行简要的概述,提出现阶段,由于计算机网络化技术的发展和不断的完善,计算机网络系统日趋复杂化,智能化,并且被广泛应用到入类生产生活的方方面面,所
The desire for practical utilization of recharge-able lithium batteries with high energy density has moti-vated attempts to develop new electrode materials and
期刊
运用将含时密度泛函理论(TDDFT)和分子动力学相结合的方法,研究了C3分子线的光吸收谱以及它在强激光场中的电子和离子响应。计算结果表明,C3分子线光吸收谱可以分为两个区域,
伴随着一次次的科技革命,我们的生活发生了翻天覆地的变化,现如今信息化时代已悄然降临,计算机与互联网已逐渐成为我们日常生活所不可或缺的重要组成部分。对于计算机应用技术的
Transition-metal dichalcogenide (TMD) semi-conductors have attracted interest as photoelectrochemical (PEC) electrodes due to their novel band-gap structures, o