论文部分内容阅读
本文在统一的框架下描述了隐马尔柯夫模型(HMM)用于语音识别时的各种形式,包括离散HMM、连续混合密度HMM、半连续HMM和最大分量连续HMM等,指出各种模型均是统一形式下的导出形式。文中就离散HMM、连续混合密度HMM和最大分量连续HMM在非特定人全音节汉语语音识别中的应用,从识别率和复杂度两方面进行了性能比较。为提高最大分量连续HMM的识别性能;提出了一种修正的训练算法。