论文部分内容阅读
为实现图像超分辨力重建,提出了一个自适应半耦合稀疏字典学习算法。由于耦合字典学习算法中存在稀疏编码约束条件太过严苛的缺点,本文采用半耦合的字典学习算法。根据在半耦合的字典学习算法中全局字典表达的局限性,分析和采用了多字典训练算法及相应的重建方法。提出了基于自适应图像块聚类算法的半耦合稀疏字典学习算法。仿真实验结果显示,新算法重建得到的Butterfly,Cameraman,Foreman,Plants,Hat和Lena等图像的峰值信噪比(PSNR)分别比用基于K-means聚类算法的半耦合稀疏字典学