论文部分内容阅读
目的城镇建成区是城镇研究重要的基础信息,也是实施区域规划、落实城镇功能空间布局的前提。但是遥感影像中城镇建成区的环境复杂,同时不同城镇建成区在坐落位置、发展规模等方面存在许多差异,导致其信息提取存在一定困难。方法本文基于面向图像语义分割的深度卷积神经网络,使用针对特征图的强化模块和通道域的注意力模块,对原始DeepLab网络进行改进,并通过滑动窗口预测、全连接条件随机场处理方法,更准确地实现城镇建成区提取。同时,针对使用深度学习算法容易出现过拟合和鲁棒性不强的问题,采用数据扩充增强技术进一步提升模型