论文部分内容阅读
为提高GPS高程异常拟合的精度及可靠性,基于相关向量机模型(Relevance vector machine,RVM),提出了一种稀疏化概率式的GPS高程异常SVM拟合模型。以柯西核函数与交叉验证法构建相关向量机,并推导了置信区间的估计公式。以某矿区GPS高程控制网为例,构建了基于相关向量机的高程异常拟合模型,并与多项式拟合、BP神经网络和遗传最小二乘支持向量机进行精度对比,通过置信区间估计,评价拟合结果的可靠性。试验结果表明:1相关向量机的平均绝对误差(Mean absolute error,MA