论文部分内容阅读
泥石流危险性的主要评价指标与危险程度之间有着某种复杂的非线性的关系,通常采用统计分析、模糊评价、BP神经网络等评价方法,但这些方法均存在不足之处,难以进行准确评价。为了克服以上方法的不足,结合泥石流危险性评价指标,建立了基于径向基函数神经网络的泥石流危险性评价模型,并将该模型结果与BP神经网络的评价结果进行了对比。实验结果表明,径向基函数神经网络的模拟结果比BP神经网络更接近测量数据,精度更高,训练所需时间更少。因此,径向基函数神经网络经过充分训练后,能够较为准确地对泥石流的危险性进行评价,具有较好