论文部分内容阅读
肺结节CT图像表征复杂且多样,导致对肺结节进行分类较为困难。虽然越来越多的深度学习模型被应用到计算机辅助肺癌诊断系统的肺结节分类任务中,但这些模型的"黑盒"特性无法解释模型从数据中学习到了哪些知识,以及这些知识是如何影响决策的,导致诊断结果缺乏可信性。为此,文中提出了一种可解释的多分支卷积神经网络模型来判别肺结节的良恶性。该模型利用医生诊断时所用的肺结节语义特征信息来辅助诊断肺结节的良恶性,并将这些特征与肺结节良恶性判别网络融合成多分支网络,在完成肺结节良恶性诊断任务的同时,得到肺结节相关语义特征的