论文部分内容阅读
Increasing attention is being paid to the oxycombustion technique of coal-fired power plants because CO 2 produced from fossil fuel combustion can be captured and sequestrated by it. However, there are many questions about the economic properties of the oxy-combustion technique. In this paper, a detailed techno-economic evaluation study was performed on three typical power plants (2 × 300 MW subcritical, 2 × 600 MW supercritical, 2 × 1000 MW ultra supercritical), as conventional air fired and oxycombustion options in China, by utilizing the authoritative data published in 2010 for the design of coal-fired power plants. Techno-economic evaluation models were set up and costs of electricity generation, CO 2 avoidance costs as well as CO 2 capture costs, were calculated. Moreover, the effects of CO 2 tax and CO 2 sale price on the economic characteristics of oxycombustion power plants were also considered. Finally, a sensitivity analysis for parameters such as coal sample, coal price, air separation unit price, flue gas treatment unit price, CO 2 capture efficiency, as well as the air excess factor was conducted. The results revealed that: (1) because the oxy-combustion technique has advantages in thermal efficiency, desulfurization efficiency and denitration efficiency, oxy-combustion power plants will reach the economic properties of conventional air fired power plants if, (a) the CO 2 emission is taxed and the high purity CO 2 product can be sold, or (b) there are some policy preferences in financing and coal price for oxy-combustion power plants, or (c) the power consumption and cost of air separation units and flue gas treatment units can be reduced; (2) from subcritical plants to supercritical and finally ultra-supercritical plants, the economics are improving, regardless of whether they are conventional air fired power plants or oxy-combustion power plants.
Increasing attention is being paid to the oxycombustion technique of coal-fired power plants as CO 2 produced from fossil fuel combustion can be captured and sequestrated by it. However, there are many questions about the economic properties of the oxy-combustion technique. paper, a detailed techno-economic evaluation study was performed on three typical power plants (2 × 300 MW subcritical, 2 × 600 MW supercritical, 2 × 1000 MW ultra supercritical), as conventional air fired and oxycombustion options in China, by utilizing the authoritative data published in 2010 for the design of coal-fired power plants. Techno-economic evaluation models were set up and costs of electricity generation, CO 2 avoidance costs as well as CO 2 capture costs, were calculated. Moreover, the effects of CO 2 tax and CO 2 sale price on the economic characteristics of oxycombustion power plants were also considered. Finally, a sensitivity analysis for parameters such as coal sample, coal price, air separation unit price, flue gas treatment unit price, CO2 capture efficiency, as well as the air excess factor was conducted. The results revealed that: (1) because the oxy-combustion technique has advantages in thermal efficiency, desulfurization efficiency and denitration efficiency, oxy-combustion power plants will reach the economic properties of conventional air fired power plants if, (a) the CO 2 emission is taxed and the high purity CO 2 product can be sold, or (b) there are some policy preferences in financing and coal price for oxy-combustion power plants, or (c) the power consumption and cost of air separation units and flue gas treatment units can be reduced; (2) from subcritical plants to supercritical and finally ultra-supercritical plants, the economics are improving, regardless of whether they are conventional air fired power plants or oxy-combustion power plants.