论文部分内容阅读
支持向量机的训练需要求解一个带约束的二次规划问题,但在数据规模很大的情况下,经典的训练算法将会变得非常困难。提出了一种改进的基于粒子群的优化算法,用于替代支持向量机中现有的训练算法。在改进后的粒子群优化算法中,粒子不仅向自身最优和全局最优学习,还以一定的概率向其他部分粒子的均值学习。同时,还引进了自适应变异算子,以降低未成熟收敛的概率。实验表明,提出的改进训练算法相对改进前的算法在性能上有显著提高。