论文部分内容阅读
当支持向量机中存在相互混叠的海量训练样本时,不但支持向量求取困难,且支持向量数目巨大,这两个问题已成为限制其应用的瓶颈问题。该文通过对支持向量几何意义的分析,首先研究了支持向量的分布特性,并提出了基于几何分析的支持向量机快速算法,该算法首先从训练样本中选择出部分近邻向量,然后在进行混叠度分析的基础上,选择真实的边界向量样本子空间用来代替全部训练集,这样既大大减少了训练样本数目,同时去除了混叠严重的奇异样本的影响,并大大减少了支持向量的数目。实验结果表明:该算法在不影响分类性能的条件下,可以加快支持向