论文部分内容阅读
广东 湛江 524000
摘要:中央空调的循环水系统是使空调能正常运作的重要组成部分,正常情况下其耗电能较大,通过结合相关原理来进行节能改造可以有效减少耗电。本文介绍了空调水系统变频的节能原理,对水系统工频和变频的运行效果进行比较,并说明了水系统变频节能控制原理,以某中央空调的水系统变频节能改造为例,阐述了其水系统改造后带来的节能效益。应用结果说明了经改造后的空调系统能够正常运行,各方面的指标均达到要求,有着良好的节能效果。
关键词:中央空调;节能;变频;水系统;控制原理
0 引言
随着我国经济的不断增长,城市化的进程不断加快,各地的大型建筑越来越多,因此大型中央空调的使用也变得广泛起来。但是由于中央空调耗电能巨大,不利于环境保护和可持续发展的理念,所以如何对中央空调进行节能改造成为了人们需要解决的问题。下面就此进行讨论分析。
1 空调水系统变频节能原理
中央空调水系统变频:指对冷却水泵和冷冻水泵进行改造。通过对水泵的变频,将水系统改造为变流量运行,使空调系统的负荷与实际相匹配。
通常冷水机组是在定流量设计下运行的,冷水机组要保持定流量的主要原因是:①蒸发器(或冷凝器)内水流速的改变会改变水侧放热系数,影响传热;②管内流速太低,若水中含有机物或盐,在流速小于1m/s时,会造成管壁腐蚀;③避免由于冷水流量突然减小,引起蒸发器的冻结。实际空调系统水泵变频改造工程表明,对空调水系统水泵进行变频节能改造,对冷水机组的功率几乎没有影响。因此,合理利用变频节能控制方法,对整个中央空调控制系统会起到更好的保护作用。
空调系统变频节能的依据是空调系统在部分负荷的运行状态下,通过减小水流量来维持空调系统冷负荷的不变,从而节省循环水系统中水泵的能耗。根据水泵的工作原理可知,水泵的流量、扬程、转速与功率之间的关系为:
(1)
式中:Q1、Q2为水泵的流量,m3/h;n1、n2为水泵的转速,r/s;H1、H2为水泵的扬程,m;P1、P2为水泵的功率,kW。
由式(1)可知,水泵的流量与转速成正比关系,而水泵的输入功率与转速的立方成正比关系。由该关系可知,当水泵的转速降低后,流量按照某比例减小,相应泵的功率按照该比例的三次方下降。
一次泵水系统是实现空调水系统节能的最佳配置。传统的空调水系统在末端设置电动两通阀或电动三通阀,通过阀门开度来调节水流量。这种方法虽然能减小空调系统的流量,但却大大增加了系统的压力,即增加系统的管路阻力,使大部分的能量消耗在阀门上。
随着变频器价格的下降,变频泵在空调水系统中的应用也越来越多。当泵的转速由n1变为n2时,相应的流量也从Q1变为Q2,实现了流量调节,与普通的循环泵相比,节约了水泵的能耗。另外,变频泵可以使管网的流量连续变化,实现无级调节,有利于更好地降低水泵的能耗。设置旁通阀调节水量原理如图1所示。
图1 设置旁通阀调节水量原理图
工频和变频运行效果比较如表1所示。
表1 工频和变频运行效果比较
2 变频节能控制原理
空调水系统包括冷却水和冷冻水系统两部分。冷却水部分包括冷却水泵、冷却塔和冷却水管道。冷冻水部分包括冷冻水泵和冷冻水管道。在冷冻水部分出口和冷却水部分进出口都安装有二线制的温度变送器,对冷却水部分的进出口温度送至变频器作温差控制,而冷冻水的出口温度作恒温控制。系统结构如图2所示。
图2 系统结构示意图
图2中,温度变送器传送三个温度模拟量(冷却水进口温度、冷却水出口温度和冷冻水出口温度)至变频器,三个模拟量作为变频器控制判定根据。变频器再将启动泵信号传至PLC,通过PLC启动相应水泵,实现水泵间的切换。变频器输出信号控制着电机转速的大小,最终实现水泵内水的流量控制。变频器将设置最低限和最高限来保护制冷主机和电机,根据实际需要,冷却水进出口温差变大时,则变频器增大频率,加快电机转速,加大水的流量;反之,温差变小,则减小频率,减慢电机转速,减小水的流量。
水系统变频节能改造系统控制原理如图3所示。
图3 系统控制原理图
3 工程改造及节能效果
由于空调系统的不同,采用变频节能改造的节能效益也不相同。本文以改造的某工程为例,分析其改造和节能效果。
改造工程为一政府办公楼,采用H2蒸汽双效型溴化锂吸收式制冷主机,配备两台冷却水泵和两台冷冻水泵。空调水系统的主要设备如表2所示。
表2 空调水系统主要设备
改造前,系统工频运行,即冷冻水和冷却水系统均按工频运行。运行过程中出现电机电流远超过电机的额定电流,电机外壳发热严重,甚至出现启动电流过大直接导致系统不能启动的情况。按照文中的控制原理和方法对现场系统进行改造,分析对比了系统改造前后的能耗状况。改造前,水系统每天的能耗基本相等;改造后,每天水系统的能耗会根据当天天气情况导致空调房间制冷量的变化。系统改造前后水系统单月的耗电量如表3所示。
表3 耗电量
摘要:中央空调的循环水系统是使空调能正常运作的重要组成部分,正常情况下其耗电能较大,通过结合相关原理来进行节能改造可以有效减少耗电。本文介绍了空调水系统变频的节能原理,对水系统工频和变频的运行效果进行比较,并说明了水系统变频节能控制原理,以某中央空调的水系统变频节能改造为例,阐述了其水系统改造后带来的节能效益。应用结果说明了经改造后的空调系统能够正常运行,各方面的指标均达到要求,有着良好的节能效果。
关键词:中央空调;节能;变频;水系统;控制原理
0 引言
随着我国经济的不断增长,城市化的进程不断加快,各地的大型建筑越来越多,因此大型中央空调的使用也变得广泛起来。但是由于中央空调耗电能巨大,不利于环境保护和可持续发展的理念,所以如何对中央空调进行节能改造成为了人们需要解决的问题。下面就此进行讨论分析。
1 空调水系统变频节能原理
中央空调水系统变频:指对冷却水泵和冷冻水泵进行改造。通过对水泵的变频,将水系统改造为变流量运行,使空调系统的负荷与实际相匹配。
通常冷水机组是在定流量设计下运行的,冷水机组要保持定流量的主要原因是:①蒸发器(或冷凝器)内水流速的改变会改变水侧放热系数,影响传热;②管内流速太低,若水中含有机物或盐,在流速小于1m/s时,会造成管壁腐蚀;③避免由于冷水流量突然减小,引起蒸发器的冻结。实际空调系统水泵变频改造工程表明,对空调水系统水泵进行变频节能改造,对冷水机组的功率几乎没有影响。因此,合理利用变频节能控制方法,对整个中央空调控制系统会起到更好的保护作用。
空调系统变频节能的依据是空调系统在部分负荷的运行状态下,通过减小水流量来维持空调系统冷负荷的不变,从而节省循环水系统中水泵的能耗。根据水泵的工作原理可知,水泵的流量、扬程、转速与功率之间的关系为:
(1)
式中:Q1、Q2为水泵的流量,m3/h;n1、n2为水泵的转速,r/s;H1、H2为水泵的扬程,m;P1、P2为水泵的功率,kW。
由式(1)可知,水泵的流量与转速成正比关系,而水泵的输入功率与转速的立方成正比关系。由该关系可知,当水泵的转速降低后,流量按照某比例减小,相应泵的功率按照该比例的三次方下降。
一次泵水系统是实现空调水系统节能的最佳配置。传统的空调水系统在末端设置电动两通阀或电动三通阀,通过阀门开度来调节水流量。这种方法虽然能减小空调系统的流量,但却大大增加了系统的压力,即增加系统的管路阻力,使大部分的能量消耗在阀门上。
随着变频器价格的下降,变频泵在空调水系统中的应用也越来越多。当泵的转速由n1变为n2时,相应的流量也从Q1变为Q2,实现了流量调节,与普通的循环泵相比,节约了水泵的能耗。另外,变频泵可以使管网的流量连续变化,实现无级调节,有利于更好地降低水泵的能耗。设置旁通阀调节水量原理如图1所示。
图1 设置旁通阀调节水量原理图
工频和变频运行效果比较如表1所示。
表1 工频和变频运行效果比较
2 变频节能控制原理
空调水系统包括冷却水和冷冻水系统两部分。冷却水部分包括冷却水泵、冷却塔和冷却水管道。冷冻水部分包括冷冻水泵和冷冻水管道。在冷冻水部分出口和冷却水部分进出口都安装有二线制的温度变送器,对冷却水部分的进出口温度送至变频器作温差控制,而冷冻水的出口温度作恒温控制。系统结构如图2所示。
图2 系统结构示意图
图2中,温度变送器传送三个温度模拟量(冷却水进口温度、冷却水出口温度和冷冻水出口温度)至变频器,三个模拟量作为变频器控制判定根据。变频器再将启动泵信号传至PLC,通过PLC启动相应水泵,实现水泵间的切换。变频器输出信号控制着电机转速的大小,最终实现水泵内水的流量控制。变频器将设置最低限和最高限来保护制冷主机和电机,根据实际需要,冷却水进出口温差变大时,则变频器增大频率,加快电机转速,加大水的流量;反之,温差变小,则减小频率,减慢电机转速,减小水的流量。
水系统变频节能改造系统控制原理如图3所示。
图3 系统控制原理图
3 工程改造及节能效果
由于空调系统的不同,采用变频节能改造的节能效益也不相同。本文以改造的某工程为例,分析其改造和节能效果。
改造工程为一政府办公楼,采用H2蒸汽双效型溴化锂吸收式制冷主机,配备两台冷却水泵和两台冷冻水泵。空调水系统的主要设备如表2所示。
表2 空调水系统主要设备
改造前,系统工频运行,即冷冻水和冷却水系统均按工频运行。运行过程中出现电机电流远超过电机的额定电流,电机外壳发热严重,甚至出现启动电流过大直接导致系统不能启动的情况。按照文中的控制原理和方法对现场系统进行改造,分析对比了系统改造前后的能耗状况。改造前,水系统每天的能耗基本相等;改造后,每天水系统的能耗会根据当天天气情况导致空调房间制冷量的变化。系统改造前后水系统单月的耗电量如表3所示。
表3 耗电量