论文部分内容阅读
随着深度学习的快速发展,卷积神经网络已广泛应用于计算机视觉、自然语言处理等人工智能领域中.Winograd快速卷积算法因能有效降低卷积神经网络中卷积操作的计算复杂度而受到广泛关注.随着国防科技大学自主研制的飞腾多核处理器在智能领域的推广应用,对面向飞腾多核处理器的高性能卷积实现提出了强烈需求.针对飞腾多核处理器的体系结构特征与Wingorad快速卷积算法的计算特点,提出了一种高性能并行Winograd快速卷积算法.该算法不依赖通用矩阵乘库函数,由卷积核转换、输入特征图转换、逐元素乘、输出特征图逆变换等4个