论文部分内容阅读
The Chinese sturgeon (Acipenser Sinensis) is one of the unique and important fishery resources in China. Since the construction of the Gezhouba Dam, the traditional migration route of the sturgeon has been blocked; consequently, the length of natural spawning sites is reduced from 800 km in the past to less than 5 km at present. As an endangered species, the Chinese sturgeon has become one of the most conserved aquatic species. In this article, the flow field of its spawning states in the downstream of Gezhouba Dam was simulated and analyzed using N-S equations and k ? ε turbulence model. Volume Of Fluid (VOF) method with the Finite Volume Method (FVM) was used to simulate the water-air two-phase flow to examine the computed area. On the basis of the ecological-hydraulic characteristics of Chinese sturgeon, the features of the flow field were investigated to provide theoretical support for the proper management of the Three Gorges Reservoir.
The Chinese sturgeon (Acipenser Sinensis) is one of the unique and important fishery resources in China. Since the construction of the Gezhouba Dam, the traditional migration route of the sturgeon has been blocked; km in the past to less than 5 km at present. As an endangered species, the Chinese sturgeon has become one of the most conserved aquatic species. In this article, the flow field of its spawning states in the downstream of Gezhouba Dam was simulated and analyzed using NS equations and k? ε turbulence model. Volume Of Fluid (VOF) method used with the Finite Volume Method (FVM) was used to simulate the water-air two-phase flow to examine the computed area. On the basis of the ecological -hydraulic characteristics of Chinese sturgeon, the features of the flow field were investigated to provide theoretical support for the proper management of the Three Gorges Reservoir.