论文部分内容阅读
在化学实验中经常需要对化学溶液各成分的浓度给出比较准确的预测。通过遗传算法来优化级联神经网络,利用神经网络的学习预测能力来预测化学溶液的浓度。首先用小波网络对混合溶液测出的极谱信号进行拟合并提取特征;然后用神经网络对提取的信号特征学习训练到一定程度后,把要预测浓度的化学溶液的极谱信号经小波网络提取的特征输入该网络后,给出预测值。计算结果表明,预测结果基本符合要求。