论文部分内容阅读
针对WorldView-2影像高空间分辨率评价其定量反演土壤含盐量的能力,以盐渍化现象较为明显的新疆克里雅河流域为研究对象,基于WorldView-2影像和实测高光谱数据,利用偏最小二乘回归(partial least squares regression,PLSR)和BP人工神经网络(back propagation artificial neural networks,BP ANN)方法建立定量反演该流域土壤含盐量模型并做出研究区高空间分辨率土壤含盐量分布图。结果表明:1)利用实测高光谱数据和影像数据分别建立的2种模型中BP神经网络模型预测精度都高于PLSR模型,其中基于影像数据建立的6:8:1结构的3层BP神经网络模型决定系数R2、均方根误差RMSE、相对分析误差RPD分别为0.851、0.979、2.337,模型的稳定性和预测能力都优于PLSR模型(R2、RMSE、RPD分别为0.814、1.139、2.007)。2)利用WorldView-2影像提高了土壤含盐量制图的空间分辨率,归一化植被指数NDVI和比例植被指数RVI较有效降低了植被覆盖与土壤水分对预测精度的影响。该文建立的考虑植被覆盖与土壤水分定量反演土壤含盐量的模型不需要复杂的参数,一定程度上满足了干旱、半干旱地区的盐渍化监测需求,可以促进WorldView-2等高空间分辨率卫星在盐渍化监测中的进一步应用。