论文部分内容阅读
SSD通常被认为适合于求解小目标图像检测问题,但在特征表征和检测效率两方面还存在改进空间.提出一种聚类残差SSD模型,一方面将原始SSD模型中的VGG16基础网络替换为更深的ResNet50残差网络,以改善特征表征能力.另一方面采用K-均值聚类算法取代盲目搜索机制,确定SSD中默认窗口的大小,以改善检测效率.针对德国交通标志检测数据集,模型获得了97.1%mAP和每幅图像0.07 s的检测速度.针对中国交通标志数据集,模型获得89.7%mAP和每幅图像0.08 s的检测速度.与原始SSD模型比较,本