论文部分内容阅读
Many experimental investigations reveal that it is very difficult to have a completely martensitic structure by any hardening process. Some amount of austenite is generally present in the hardened steel. This austenite existing along with martensite is normally referred as the retained austenite. The presence of retained austenite greatly reduces the mechanical properties and such steels do not develop maximum hardness even after cooling at rates higher than the critical cooling rates.Strength can be improved in hardened steels containing retained austenite by a process known as cryogenic quenching.Untransformed austenite is converted into martensite by this treatment. This conversion of retained austenite into martensite results in increased hardness, wear resistance and dimensional stability of steel. Wear can be defined as the progressive loss of materials from the operating surface of a body occurring as a result of relative motion at the surface. Hardness, load,speed, surface roughness, temperature are the major factors which influences wear. Many studies on wear indicate that increasing hardness decreases the wear of a material. With this in mind, to study the surface wear on a surface modified(Cryogenic treated) steel material an attempt has been made in this paper. In this study as a Part -I Hardening was carried out on carbon tool steel (AISI 1095) of different L/D ratio with conventional quenchants like purified water, aqueous solution and Hot mineral oil. As a Part -Ⅱ hardening was followed by quenching was carried out as said in Part- I and the hardened specimen were quenched in liquid Nitrogen which is at sub zero condition. The specimens were tested for its microstructure, hardness and wear loss. The results were compared and analyzed. The alloying elements increases the content of retained austenite hence the material used was AISI1095 (Carbon 0.9%, Si 0.2%, Mn0.4% and the rest Iron)