论文部分内容阅读
为了提高电力负荷中期预测水平,提出了1种核主成分分析(KPCA)和粒子群优化反向传播神经网络(PSO-BPNN)相结合的电力负荷中期预测模型。引入KPCA对原始输入空间降维重构,将降维后的数据集输入PSO算法优化的BPNN模型中,提出了月平均最大预测负荷修正日预测负荷的方法,输出待预测日的最大预测负荷。采用欧洲智能技术网络提供的负荷数据进行验证,实验结果的平均绝对百分误差为1.39%。