论文部分内容阅读
传统多模态磁共振分析通常是基于单模态数据,对其结果进行简单的比较或相关性分析,但各模态之间的先验交互信息未被充分利用。而链接独立成分分析(linked independent component analysis,LICA)是一种多模态数据融合方法,能够通用灵活地利用独立成分分析对多模态数据进行融合分析,允许每个模态组具有不同的单位、信噪比等,而且能够自动确定组内各模态的最佳权重,从而可以更充分地利用各模态之间的交互信息,在脑疾病研究中得到了广泛应用。本文就该方法在神经精神疾病的病理机制、临床诊断及分类识别等方面的MRI研究进展进行综述。