基于光伏并网逆变器的一种滞环电流控制技术

来源 :电工电气 | 被引量 : 0次 | 上传用户:kensy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在三相光伏并网逆变器系统的设计中,滞环电流控制策略具有开关频率高、电流谐波失真较大等问题.介绍了一种空间矢量-不对称双滞环电流控制方法,在MATLAB/Simulink仿真平台分别搭建了基于三相静止坐标系下与两相静止坐标下的仿真模型,在并网电流与电网电压、开关频率、功率因数等方面对两种控制策略进行对比分析,仿真结果验证了空间矢量-不对称双滞环电流控制方法能够在一定程度上减小开关频率,降低输出电流的总谐波失真.
其他文献
采用阳极氧化和低表面能物质修饰的方法在TC4钛合金表面制备超疏水涂层.工艺过程为:在由0.5 mol/L H2SO4、0.2 g/L NH4HF2和0.8 g/L Ce(SO4)·4H2O组成电解液(5°C)中以电压100 V阳极氧化1 h,再于三乙氧基-1H,1H,2H,2H-十三氟-N-辛基硅烷的乙醇溶液中浸泡2 h,最后真空烘干1 h.通过扫描电镜(SEM)观察超疏水涂层的微观形貌,X射线光电子能谱仪(XPS)分析超疏水涂层表面的元素组成及其化学态,X射线衍射仪(XRD)分析超疏水涂层表面的物相组成
以WCB钢为基材,采用国产化小型超音速火焰喷涂(HVOF)设备喷涂Ni60镍基合金涂层.通过扫描电子显微镜(SEM)及能谱仪(EDS)分析、显微硬度计测试、拉伸试验、磨粒磨损试验和冲蚀磨损试验,考察了Ni60涂层的组织形貌、微观结构、孔隙率、显微硬度、结合强度、耐磨粒磨损性能和耐冲蚀磨损性能,并对实际小尺寸疏水阀门内壁进行喷涂,分析该工艺的实际可行性.结果表明,所制备的Ni60涂层的孔隙率为(0.27±0.04)%,显微硬度为843 HV(载荷300 g),界面结合强度高达200 MPa以上.该涂层主要由
总结了沙特阿美石油公司海洋石油平台预制管线内涂熔结环氧粉末涂层实际项目的经验,阐述了涂层的应用环境介质、系统设计、施工工艺以及涂层性能检测标准与要求,分析了施工难点及质量控制要点.
针对传统冗余惯性导航系统存在成本高,体积大,功耗大的问题,提出采用低精度MEMS惯组参与惯性导航冗余的导航系统冗余模式.利用MEMS惯组单次通电稳定性具有优势的特点,利用高精度惯组信息对低精度惯组参数进行在线估计.免除因增加惯性器件导致射前标定的大工作量.针对导航参数在飞行器飞行过程中可能发生变化的问题,提出一种自适应滑动窗口估计方法,利用数据的分散性对有效估计时间进行决策,并采用最小二乘法对参数进行估计,仿真结果表明该方法是有效的.“,”In order to solve the problems of
将传统溶剂蜡切换为环保型空腔防护蜡,同时对喷蜡设备进行适应性改造,优化了环保蜡的喷涂效果,进一步降低了汽车喷蜡过程的VOC(挥发性有机化合物)排放,减轻了环境压力.
再入式飞行器在不同雷诺数条件下会出现层流、转捩以及湍流流动状态,采用大涡模拟方法细致地刻画了类神舟返回舱外形不同绕流状态下的底部流动形态以及稳定性特征,从肩部剪切失稳、底部分离失稳、尾迹发展区以及远尾迹区的耦合失稳等多个角度分析了其底部流动特征的异同.结果表明:不同绕流状态下类神舟返回舱外形的底部流动特征存在明显差异.在低雷诺数条件下类神舟返回舱外形绕流基本为层流状态,其肩部剪切层失稳较晚,底部分离区较大,尾迹区域类卡门涡街的振荡幅值较小;在高雷诺数条件下类神舟返回舱外形绕流存在转捩和湍流行为,其肩部剪切
数字化是新兴的技术变革,装备数字化首当其冲.为了探索航天装备数字化的方向路径,简要概述了装备数字化的发展过程,分析了航天数字化现有基础与不足,据此结合数字化技术发展趋势,提出了装备数字化的发展方向,建议通过发展自主可控的新一代数字化工业软件,建设自主可控的装备模型库体系,培育自主可控的装备数字化工程生态,支撑航天装备的数字化发展与业务流程的数字化转型.“,”Digitization is a new technological revolution, and equipment digitalizatio
从重点设备、维持设备、设备管理等方面介绍了车身涂装现场分部的节能方法,包括改进前处理和电泳各水泵的生产方式以及电泳烘干炉、面漆烘干炉和面漆空调的生产方式,改进空压机的空气管路,提升生产节拍,等等.
总结了汽车车身内部喷漆机器人设计和实施过程中要注意的关键因素,如喷涂效率、雾化器加电、车身污染、开门装置、入喷房时的车身温度、故障应对设计以及生产数据的采集与处理.
作为大型公共载运工具,轨道交通的安全高效供电至关重要.一方面,城市轨道系统普遍采用直流牵引供电方式,其潜在的杂散电流危害日益凸显;另一方面,交流牵引供电系统中断电过分相环节的存在制约了高速重载铁路的发展;而列车再生制动能量的高效利用是实现轨道交通系统节能降耗的重要途径.近年来,随着世界轨道交通迅猛发展,国内外关于轨道交通安全供电技术的研究与应用迎来关键性的发展机遇.
期刊