论文部分内容阅读
传统支持向量机训练大规模样本时间和空间开销大,使其应用受到了很大限制。为了提高支持向量机的训练速度,根据支持向量机的基本原理,应用K最近邻思想来筛选训练样本集,提出了基于K最近邻的支持向量机快速训练算法(KNN—SVM)。算法首先选取一部分最有可能成为支持向量的样本——边界向量,然后用边界向量集代替训练样本集进行支持向量机训练,大幅度减少了训练样本的数量,使支持向量机的训练速度显著提高。同时,由于边界向量包含了支持向量,因此,支持向量机的分类能力没有受到影响。仿真实验结果表明,与传统支持向量机相比,在分类