论文部分内容阅读
AdaBoost作为一种有效的集成学习方法,能够明显提高不稳定学习算法的分类正确率,但对稳定的Naive Bayesian分类算法的提升效果却不明显.为此,利用多种特征评估函数建立不同的特征视图,生成多个有差畀的加权朴素贝叶斯(WNB)基分类器;尝试使用几种不同的方式将样本权重嵌入WNB基分类器的参数中,对WNB产生扰动,进一步增加基分类器的不稳定性.实验结果表明.对比AdaBoost所提算法.BoostMV-WNB能够明显提升WNB文本分类器的性能.