论文部分内容阅读
目的调查全血治疗药物监测(环孢霉素A、他克莫司、西罗莫司)室内质量控制的精密度现状。方法用基于英特网方式的室间质量评价软件系统收集参加2014年2月全国全血治疗药物监测室间质量评价的179家实验室的室内质量控制数据,用Excel 2007和SPSS 13.0对数据进行分析,并计算允许总误差(TEa)、1/3TEa和1/4Tea这3个项目的室内质量控制变异系数的通过率。结果最终分别有116家、108家和21家实验室回报了环孢霉素A、他克莫司、西罗莫司批号1的室内质量控制数据,59家、56家和4家回报了环孢霉素A、他克莫司、西罗莫司批号2的室内质量控制数据。约半数实验室(40.7%~57.1%)用伯乐检测系统。西罗莫司室内质量控制变异系数除累积1/4TEa的通过率在项目间差异有统计学意义外(P<0.05),其余情况不同项目间的通过率差异无统计学意义(P>0.05)。环孢霉素A各检测系统室内质量控制变异系数的通过率差异无统计学意义(P>0.05)。他克莫司除累积室内质量控制不精密度在1/4TEa评价标准时的通过率不同检测系统间差异无统计学意义外(P>0.05),其他3种情况差异均有统计学意义(P<0.01)。结论西罗莫司是室内质量控制变异系数通过率最高的检验项目,环孢霉素A不存在不同检测系统间室内质控变异系数通过率的差异,而他克莫司存在。通过对当月和累积的室内质量控制数据的变异系数的监测,并将室内质量控制数据计算的变异系数与相关要求进行比较,可以评价该检测系统的不精密度水平是否满足规定的质量要求。
Objective To investigate the precision of indoor quality control of whole blood treatment drug monitoring (cyclosporin A, tacrolimus and sirolimus). Methods The indoor quality control data of 179 laboratories participating in the evaluation of the quality of the whole nationwide blood treatment drug monitoring room in February 2014 were collected using the Internet-based inter-room quality evaluation software system. The data were collected using Excel 2007 and SPSS 13.0 Analysis, and calculate the pass rate of indoor quality control coefficient of variation of the three items that allow the total error (TEa), 1/3 TEa and 1 / 4Tea. As a result, 116, 108 and 21 laboratories respectively reported indoor quality control data for cyclosporine A, tacrolimus and sirolimus lot 1, and 59, 56 and 4 returned loop Indoor Quality Control Data for Sporicin A, Tacrolimus, and Sirolimus Lot # 2. About half of the laboratories (40.7% ~ 57.1%) with Bole detection system. The coefficient of variation of indoor quality control of sirolimus except for the cumulative 1 / 4TEa passage rate was statistically significant (P <0.05), while there was no significant difference in pass rate among the other cases (P> 0.05) . There was no significant difference in passing rate of indoor quality control coefficient of cyclosporine A detection system (P> 0.05). Tacrolimus had no significant difference in the passing rates of different quality control systems (P> 0.05) except for the cumulative in-room quality control imprecision in the 1 / 4TEa evaluation standard, and the other three statistic differences were statistically significant (P < 0.01). Conclusion Sirolimus is the highest passing rate of indoor quality control coefficient of variation. There is no difference in the passing rate of CVQ between different detection systems for cyclosporin A, but tacrolimus exists. By monitoring the coefficient of variation of the indoor and outdoor quality control data of the current month and comparing the coefficient of variation calculated by the indoor quality control data with the relevant requirements, it is possible to evaluate whether the imprecision level of the detection system meets the specified quality requirements.