浅谈大体积混凝土裂缝产生的机理及控制措施

来源 :城市建设理论研究 | 被引量 : 0次 | 上传用户:pie1011
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  1.大体积混凝土裂缝产生的机理 大体积混凝土裂缝在建筑中经常可以见到,而且随着科学技术的发展和实验技术的完善,特别是有关大体积混凝土的现代实验设备的出现(如各种实验显微镜、X光照相设备、超声仪器、渗透观测仪等),已经证实了大体积混凝土和钢筋混凝土结构中也存在着肉眼不可见的裂缝。 常见裂缝主要有以下三种类型:① 粘着裂缝:指钢筋与水泥石粘接面上的裂缝,主要沿钢筋周围出现; ② 水泥石裂缝:指水泥浆中的裂缝,主要出现在钢筋与钢筋之间; ③ 钢筋骨料裂缝:指钢筋或者骨料等本身的裂缝。 这三种裂缝比较,前两种较多,大体积混凝土的裂缝主要指前两种,他们的存在对于大体积混凝土的基本物理力学性质如弹塑性、各种强度、变形、泊松比、结构刚度、化学反应等有着重要的影响。 大体积混凝土裂缝产生的原因可按其构造理论加以解释,即把混凝土看做是由钢筋、水泥石、气体、水份等组成的非均质材料,在温度、湿度和其他条件变化下,混凝土逐步硬化,同时产生体积变形,这种变形是不均匀的,水泥石收缩较大,钢筋收缩很小,水泥石热膨胀系数较大,钢筋热膨胀系数较小,他们之间的相互变形引起约束应力。在构造理论中提出了一种简单的计算模型,即假定圆形钢筋不变形且均匀分布于均质弹性水泥石中,当水泥石产生收缩时引起内应力,这种应力可引起粘着微裂缝和水泥石裂缝,混凝土的裂缝肉眼是看不见的,肉眼可见裂缝范围一般以0.05mm为界。大于等于0.05mm的裂缝称为宏观裂缝,它是裂缝扩展的结果。观测证实,结构物的裂缝是时刻不停的运动着,这种运动包含两种意思:一是裂缝宽度的扩展与缩小;二是裂缝长度的延伸及裂缝数量的增加。裂缝稳定的运动是正常的,工程中要防止的是不稳定的裂缝运动。 下面就通过不同的理论基础来分析大体积混凝土温度裂缝产生的机理。 大体积混凝土的破坏机理,现在国内外学者普遍认为是混凝土在浇筑、形成过程中不可避免存在着毛细孔、空隙及材料的裂隙缺陷,在外界因素作用下,这些缺陷部位将产生高度的应力集中,并逐渐扩展发展,形成大体积混凝土体中的微裂纹。另一方面,大体积混凝土体中各相的结合界面是最薄弱的环节,在外界因素作用下,将脱开而形成截面裂隙,并发展成微裂纹。若外界因素继续作用,混凝土体中的微裂纹经过汇集、贯通的过程而形成宏观裂缝。同时,宏观裂纹的端部又因应力集中而出现新的微裂纹,甚至出现微裂纹区,这又将发展成新的宏观裂缝或体现为原有宏观裂纹的延伸。如此反复交替,宏观裂缝必将沿着一条最薄弱的路径逐渐扩展,最后使混凝土完全断开而破坏。因此,大体积混凝土材料的破坏过程实际上是损伤、损伤积累、宏观裂纹出现、损伤继续积累、宏观裂缝扩展交织发生的过程。
   不论外界因素作用引起的效应是拉、压、剪或扭,大体积混凝土体破坏的过程都是相类似的。如果引起的效应是拉,则微裂纹或微裂缝将沿与之正交的方向扩展;如为压,则沿与之平行的方向扩展;如为剪或扭,则将沿剪应力的方向滑动扩展。显然,在非均匀应力场的大体积混凝土体中上述微裂纹的萌生与扩展以及宏观裂纹的出现和扩展,都将首先在高应力区中发生,甚至只集中发生在高应力区,因为当高应力区中裂纹或裂缝扩展时,对相邻的低应力区产生卸载效应,因此,该区域内的裂纹和裂缝不可能再继续发育和发展,甚至会引起逆效应,如原来已张开的裂缝可能重新闭合。 大体积混凝土结构在施工期经历了升温和降温两个过程。由于水泥砂浆与钢筋热膨胀系数的不同,在升温过程中温度荷载作用下水泥砂浆与钢筋所形成的界面首先产生损伤,并随温度增加而发展,因此形成界面裂纹,当继续增加的温差达到某一数值后,界面裂纹便向水泥砂浆中延伸。在以后的降温过程中界面裂纹与水泥砂浆中的微裂纹继续发展,以致发展成宏观裂缝,并可能導致混凝土结构发生断裂破坏,由于损伤是不可恢复的,故在以后的降温过程中,所形成的界面裂缝不会消失,而且降温过程中不仅原有的微裂纹会发展,同时也会产生新的微裂纹。
   1.1大体积混凝土裂缝产生的主要影响因素 大体积混凝土由于截面大,水泥用量大,水泥水化释放的水化热会产生较大的温度变化,由此形成的温度应力是导致产生裂缝的主要原因。这种裂缝分为两种:
   ① 大体积混凝土浇筑初期,水泥水化产生大量水化热,使大体积混凝土的温度很快上升。但由于大体积混凝土表面散热条件较好,热量可以向大气中散发,因而温度上升较少;而大体积混凝土内部由于散热条件较差,热量散发少,因而温度上升较多,内外形成温度梯度,形成内外约束。结果大体积混凝土内部产生压应力,面层产生拉应力,当该拉应力超过大体积混凝土的抗拉强度时,大体积混凝土表面就产生裂缝。 ② 大体积混凝土浇筑后数日,水泥水化热基本上已释放,大体积混凝土从最高温逐渐降温,降温的结果引起大体积混凝土收缩,再加上由于大体积混凝土中多余水份蒸发、碳化等引起的体积收缩变形,受到地基和结构边界条件的约束(外约束),不能自由变形,导致产生温度应力(拉应力),当该温度应力超过大体积混凝土抗拉强度时,则从约束面开始向上开裂形成温度裂缝。如果该温度应力足够大,严重时可能产生贯穿裂缝。 大体积混凝土施工阶段产生的温度裂缝,是其内部矛盾发展的结果。一方面是大体积混凝土由于内外温差产生应力和应变,另一方面是结构的外约束和大体积混凝土各质点间的约束(内约束)阻止这种应变。一旦温度应力超过大体积混凝土能承受的抗拉强度,就会产生裂缝。上述大体积混凝土温度应力的大小取决于水泥、水化热、拌合浇筑温度、大气温度、收缩变形及当量温度等因素,同时它与大体积混凝土的降温散热条件和硅升降温速密切相关的,而大体积混凝土抗拉强度的提高与大体积混凝土本身材料性能有关,此外还与施工方案及配筋等因素有关。
   1.1.1水泥水化热 水泥在水化过程中要产生一定的热量,是大体积混凝土内部热量的主要来源。 由于大体积混凝土截面厚度大,水化热聚集在结构内部不易散失,所以会引起急骤升温。水泥水化热引起的绝热温升,与混凝土单位体积内的水泥用量和水泥品种有关,并随混凝土的龄期按指数关系增长,一般在10d左右达到最终绝热温升,但由于结构自然散热,实际上混凝土内部的最高温度,大多发生在混凝土浇筑后的3~5d。 1.1.2大体积混凝土的导热性能 热量在大体积混凝土内传递的能力反映在其导热性能上。大体积混凝土的导热系数越大,热量传递率就越大,则其与外界热交换的效率也越高,从而使大体积混凝土内最高温升降低。同时也减小了大体积混凝土的内外温差。可以预计,导热性能越好,热峰值出现的时间也相应提前。中部最高温度的热峰值及热峰值出现的时间与板厚密切有关。显见,板越厚,中部点散热较少,热峰值也越高,中部受外界温降影响所需时间就越长,峰值出现的时间也要晚一些。 大体积混凝土的导热性能较差,浇筑初期,混凝土的弹性模量和强度都很低,对水化热急剧温升引起的变形约束不大,温度应力较小。随着混凝土龄期的增长,弹性模量和强度相应提高,对混凝土降温收缩变形的约束愈来愈强,即产生很大的温度应力,当大体积混凝土的抗拉强度不足以抵抗该温度应力时,便开始产生温度裂缝。 1.1.3外界气温变化 大体积混凝土结构施工期间,外界气温的变化对大体积混凝土开裂有重大影响。大体积混凝土的内部温度是浇筑温度(既大体积混凝土的入模温度,它是大体积混凝土水化热温升的基础,可以预见,大体积混凝土的入模温度越高,它的热峰值也必然越高。工程实践中在高温季节浇筑常采用钢筋预冷,加冰拌和等措施来降低浇筑温度,控制大体积混凝土最高温升,原因在此)。水化热的绝热温升和结构散热降温等各种温度的叠加之和。外界气温愈高,大体积混凝土的浇筑温度也愈高;若外界温度下降,会增加大体积混凝土的降温幅度,特别在外界气温骤降时,会增加外层大体积混凝土与内部大体积混凝土的温度梯度,这对大体积混凝土极为不利。 2.产生裂缝的原因以及影响
   2.1温差的形成及其影响在混凝土结构中,引起温度变化的热量主要源于水泥的水化热。地下室大体积混凝土基础中,混凝土强度级别较高,水泥用量大,因此混凝土在初凝过程中会有大量水化热产生。混凝土是热的不良导体,又由于地下室底版几何尺寸巨大,这些热量不易及时排出而积聚,导致了其内部温度迅速升高(最高时可达70~80℃)。相反,在构件表面,则由于散热条件良好,温度保持较低水平,这样就出现了内外温差。这种相对的“内胀外缩”对混凝土表面产生拉应力,当它超过混凝土拉伸极限1~1.5×10-4,裂缝就产生了。
   2.2混凝土收缩变形及其影响⑴化学收缩。混凝土硬化过程中,水泥要发生一系列化学变化,称之为水化,但水化生成物体积比反应前物质总体积要小,这种收缩,我们称之为化学收缩;⑵混凝土的干收缩。干收缩是由于混凝土内部吸附水蒸发引起凝胶体失水产生紧缩,混凝土的干收缩取决于周围环境的湿度变化。在大体积混凝土中,当这种收缩由于内外环境不一致而使混凝土构件表面拉应力超过其拉伸极限时,导致了裂缝的产生。
   2.3地基的不均匀沉降及其影响基础设计的主要依据是工程地质勘察报告。任何一个地质勘察,其结果都是近似的。当设计假设模型与地质实际不符等情况出现时,都很可能出现不均匀沉降。同时,由于上部建筑物荷载不同,也产生不均匀沉降。这种不均匀沉降对混凝土就产生拉应力,当应力超过混凝土极限拉伸值时,导致裂缝产生。这种裂缝一旦出现则比较严重,可能危及安全和使用等功能。
   3.裂缝控制的材料措施
   3.1为了减少水泥用量,降低混凝土浇筑块体的温度升高。经设计单位同意,可利用混凝土60d后期强度作为混凝土强度评定、工程交工验收及混凝土配合比设计的依据。
   3.2采用降低水泥用量的方法来降低混凝土的绝对温升值,可以使混凝土浇筑后的内外温差和降温速度控制的难度降低,也可降低保温养护的费用,这是大体积混凝土配合比选择的特殊性。强度等级在C20~C35的范围内选用,水泥用量不超过380kg/m3。
   3.3应优先采用水化热低的矿渣水泥配制大体积混凝土。所用的水泥应进行水化热测定,水泥水化热测定按现行国家标准《水泥水化热试验方法(直接法)》测定,要求配制混凝土所用水泥7d的水化热不大于250tO/kg。
   3.4采用5~40mm颗粒级配的石子,控制含泥量小于1.5%。
   3.5采用中、粗砂,控制含泥量小于1.5%。
   3.6掺合料及外加剂的使用。国内当前用的掺合料主要是粉煤灰,粉煤灰水泥特性如下:成分,在硅酸盐水泥中掺入占水泥重量20~40%的粉煤灰组合而成。特性,早期强度较低,后期强度增长较快;水化热较小;耐冻性差;耐硫酸盐腐蚀及耐水性较好;抗炭化能力差;抗渗性较好;干缩性较小;抗裂性较好。供应标号,275、325、425、425R、525、525R、625R。
   选择粉煤灰水泥在技术上有两点好处:一是减少内部水化热的产生(因为减少了水泥用量);二是减少混凝土的“干缩”量,这样从整体上对裂缝的产生和扩展起到了预防和抑制作用。这样可以大大改善混凝土工作性能和可靠性,同时可代替水泥,降低水化热。掺加量为水泥用量的15%,降低水化热15%左右。外加剂主要指减水剂、缓凝剂和膨胀剂。混凝土中掺入水泥重量0.25%的木钙减水剂,不仅使混凝土工作性能有了明显的改善,同时又减少10%拌和用水,节约10%左右的水泥,从而降低了水化热。一般泵送混凝土为了延缓凝结时间,要加缓凝剂,反之凝结时间过早,将影响混凝土浇筑面的粘结,易出现层间缝隙,使混凝土防水、抗裂和整体强度下降。为了防止混凝土的初始裂缝,宦加膨胀剂。国内常用的膨胀剂有UEA,EAS、特密斯等型号。
   4.裂缝控制的施工措施
   4.1混凝土的浇筑方法可用分层连续浇筑或推移式连续浇筑,不得留施工缝,并应符合下列规定:
   (1)混凝土的摊铺厚度应根据所用振捣器的作用深度及混凝土的和易性确定,当采用泵送混凝土时,混凝土的摊铺厚度不大于600mm;当采用非泵送混凝土时,混凝土的摊铺厚度不大于400mm。
   (2)分层连续浇筑或推移式连续浇筑,其层间的间隔时间应尽量缩短,必须在前层混凝土初凝之前,将其次层混凝土浇筑完毕。层间最长的时间间隔不大于混凝土的初凝时间。当层间间隔时间超过混凝土的初凝时间。层面应按施工缝处理。
  4.2大体积混凝土施工采取分层浇筑混凝土时,水平施工缝的处理应符合下列规定:1)清除浇筑表面的浮浆、软弱混凝土层及松动的石子,并均匀露出粗骨料;
   2)在上层混凝土浇筑前,应用压力水冲洗混凝土表面的污物,充分湿润,但不得有水;
   3)对非泵送及低流动度混凝土,在浇筑上层混凝土时,应采取接浆措施。
   4.3混凝土的拌制、运输必须满足连续浇筑施工以及尽量降低混凝土出罐温度等方面的要求,并应符合下列规定:
   1)当炎热季节浇筑大体积混凝土时,混凝土搅拌场站宜对砂、石骨料采取遮阳、降温措施;
   2)当采用泵送混凝土施工时,混凝土的运输宜采用混凝土搅拌运输车,混凝土搅拌运输车的数量应满足混凝土连续浇筑的要求。
   4.4在混凝土浇筑过程中,应及时清除混凝土表面的泌水。泵送混凝土的水灰比一般较大,泌水现象也较严重,不及时清除,将会降低结构混凝土的质量。
   4.5混凝土浇筑完毕后,应及时按温控技术措施的要求进行保温养护,并应符合下列规定:
   1)保温养护措施,应使混凝土浇筑块体的里外温差及降温速度满足温控指标的要求;
   2)保温养护的持续时间,应根据温度应力(包括混凝土收缩产生的应力)加以控制、确定,但不得少于15d,保温覆盖层的拆除应分层逐步进行;
   3)在保温养护过程中,应保持混凝土表面的湿润。 保温养护是大体积混凝土施工的关键环节,其目的主要是降低大体积混凝土浇筑块体的内外温差值以降低混凝土块体的自约束应力;其次是降低大体积混凝土浇筑块体的降温速度,充分利用混凝土的抗拉强度,以提高混凝土块体承受外约束廊力的抗裂能力,达到防止或控制温度裂缝的目的。同时,在养护过程中保持良好的湿度和抗风条件,使混凝土在良好的环境下养护。施工人员需根据事先确定的温控指标的要求,来确定大体积混凝土浇筑后的养护措施。
   4.6塑料薄膜、草袋可作为保温材料覆盖混凝土和模板,在寒冷季节可搭设挡风保温棚。覆盖层的厚度应根据温控指标的要求计算。
   4.7对标高位于±0.0以下的部位,应及时回填土;±0.0以上的部位应及时加以覆盖,不宜长期暴露在风吹日晒的环境中。
   4.8在大体积混凝土拆模后,应采取预防寒潮袭击、突然降温和剧烈干燥等措施。
   5.大体积混凝土的温控施工现场监测工作
   5.1大体积混凝土的温控施工中,除应进行水泥水化热的测定外,在混凝土浇筑过程中还应进行混凝土浇筑温度的监测,在养护过程中应进行混凝土浇筑块体升降温、内外温差、降温速度及环境温度等监测。监测的规模可根据所施工工程的重要性和施工经验确定,测温的方法可采用先进的测温方法,如有经验也可采用简易测温方法。这些监测结果能及时反馈现场大体积混凝土浇筑块内温度变化的实际情况,以及所采用的施工技术措施的效果。为工程技术人员及时采取温控对策提供科学依据。
   5.2混凝土的浇筑温度系指混凝土振捣后,位于混凝土上表面以下50~l00mm深处的温度。混凝土浇筑温度的测试每工作班(8h)应不少于2次。
   5.3大体积混凝土浇筑块体内外温差、降温速度及环境温度的测试,每昼夜应不少于2次。
   5.4大体积混凝土浇筑块体温度监测点的布置,以能真实反映出混凝土块体的内外温差、降温速度及环境温度为原则,一般可按下列方式布置:
   1)温度监测的布置范围以所选混凝土浇筑块体平面图对称轴线的半条轴线为测温区(对长方体可取较短的对称轴线),在测温区内温度测点呈平面布置;
   2)在测温区内,温度监测的位置可根据混凝土浇筑块体内温度场的分布情況及温控的要求确定;
   3)在基础平面半条对称轴线上,温度监测点的点位宜不少于4处;
   4)沿混凝土浇筑块体厚度方向,每一点位的测点数量,宜不少于5点;
   5)保温养护效果及环境温度监测点数量应根据具体需要确定;
   6)混凝土浇筑块体底表面的温度,应以混凝土浇筑块体底表面以上50ram处的温度为准;
   7)混凝土浇筑块体的外表温度,应以混凝土外表以内50ram处温度为准。
   5.5测温元件的选择应符合下列规定:测温元件的测温误差应不大于0.3℃;测温元件安装前,必须在浸水24h后,按上述的要求进行筛选。
   5.6监测仪表的选择应符合下列规定:温度记录的误差应不大于±l℃;测温仪表的性能和质量应保证施工阶段测试的要求。
   5.7测温元件的安装及保护应符合下列规定:
   1)测温元件安装位置应准确,固定牢固,并与结构钢筋及固定架金属体绝热;
   2)测温元件的引出线应集中布置,并加以保护;
   3)混凝土浇筑过程中,下料时不得直接冲击测温元件及其引出线,振捣时,振捣器不得触及测温元件及其引出线。
   综述:大体积混凝土结构的施工技术与措施直接关系到混凝土结构的使用性能,如何采取更好的方法来降低混凝土的水化热,掺和料的用量该如何控制,混凝土原材料的温度是否可以再降低?这些都有待于在施工实践中进一步积累经验,采取有效措施,使大体积混凝土浇筑中出现的开裂问题能得到更好的解决。
  
其他文献
档案工作是一项复杂的系统工程。它关系到一个企事业的方方面面,与企事业其他部门有着千丝万缕的联系。档案工作不仅仅是几个专职档案人员能做好的事情,所以,增强企事业全方位档案意识对于做好档案工作是非常重要的,要达到这一目的须从以下几方面着手:  一、领导重视是做好档案工作的保障  档案工作是一项利在当今,功在后世的事业,是承前启后的历史见证,而实际工作中往往形成“说起来重要,干起来次要,忙起来不要”的局
摘要:随着我国住房制度的改革,住宅开发和住宅产业化的发展,住宅建筑的形式越来呈现出多样性。本文就如何在纷繁的住宅建筑形式中,能够设计出经济适用和丰富多彩,富有个性的住宅建筑进行了讨论。  关键词:住宅;建筑设计;主题;节能    随着经济的发展和社会的进步,人民生活水平大大提高,从而对所居住空间的要求越来越高,一个崭新的、富有挑战性的住宅设计新课题展现在设计工作者面前,这就要求适应时代的发展,借鉴
摘要:本文通过概述广州地下空间开发总体过程、开发形式与类型,分析了近年广州地下空间规划设计与开发情况,阐述了广州地下空间开发的现状与地下空间规划尚存在的问题。文章结合珠江新城核心区、火车东站广场、电视塔南广场等三个地下空间开发典型案例,运用类比分析的方法,从不同侧面分析概括出城市重要地段地下空间设计应遵循整体性、安全性、经济性、景观性、舒适性、商业性等六项设计原则,遵循此原则的基础上要重视地下空间
[摘要]:随着社会的进步和人类对工作、生活环境要求的提高,人们对垃圾填埋场工程的设计已除了要求有合理、先进的工艺流程,还需要整个场区有一个整洁优美的环境和赏心悦目的建筑形态。这就必须对垃圾填埋场工程的原有设计方法和程序思路有一个较大的改变,应把设计的全过程看成是一个持续发展的、不断开放的、经常变化的动态体系,以确保设计出一个优秀工程来。  [关键词]:垃圾填埋场建筑设计。  0. 概况   某市城
期刊
摘要:质量管理工具是质量管理的重要组成部分。本文对质量管理中常用的七种管理工具:鱼刺图、控制图、散点图、直方图、帕累托图、流程图和趋势图,进行简要概述并对每种工具的特点进行了较为细致的归纳。  关键词:质量管理;质量管理工具。  引言  俗话说:“工欲善其事必先利其器”。在质量管理的质量规划、质量保证和质量控制三个主要过程中,都必须使用一些特有的工具和技术才能起到事半功倍的效果。下面本文就给大家简
喘振是压缩机的一种固有特性,由于喘振造成的后果通常是严重的,因此有效防止风机喘振是非常必要的。本文介绍了离心压缩机用气动弹簧薄膜式防喘振阀的气动控制原理、快开慢关功