论文部分内容阅读
针对目前约束优化算法易陷入局部最优和鲁棒性不好等缺点,提出基于自适应ε的约束优化算法。首先,通过改进的个体比较准则,充分利用优秀不可行个体的有效信息,加大对搜索空间的探索力度,从而提高种群多样性;其次,提出自适应£调整策略,平衡目标函数和约束违反度之间的关系,进而更加合理地进行个体比较。对13个标准测试函数的对比实验表明,本文算法不仅能够以较高精度收敛到全局最优解,而且鲁棒性较好。