论文部分内容阅读
贝叶斯Q学习方法使用概率分布来描述Q值的不确定性,并结合Q值分布来选择动作,以达到探索与利用的平衡。然而贝叶斯Q学习存在着收敛速度慢且收敛精度低的问题。针对上述问题,提出一种基于优先级扫描Dyna结构的贝叶斯Q学习方法—Dyna-PS-BayesQL。该方法主要分为2部分:在学习部分,对环境的状态迁移函数及奖赏函数建模,并使用贝叶斯Q学习更新动作值函数的参数;在规划部分,基于建立的模型,使用优先级扫描方法和动态规划方法对动作值函数进行规划更新,以提高对历史经验信息的利用,从而提升方法收敛速度及收敛精