Largest signless Laplacian spectral radius of uniform supertrees with diameter and pendent edges (ve

来源 :中国数学前沿 | 被引量 : 0次 | 上传用户:ddllmmttyy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Let S(m,d,k) be the set of k-uniform supertrees with m edges and diameter d,and S1(m,d,k) be the k-uniform supertree obtained from a loose path u1,e1,u2,e2,…,ud,ed,ud+1 with length d by attaching m-d edges at vertex u[d/2」+1.In this paper,we mainly determine S1 (m,d,k) with the largest signless Laplacian spectral radius in S(m,d,k) for 3 ≤ d ≤ m-1.We also determine the supertree with the second largest signless Laplacian spectral radius in S(m,3,k).Furthermore,we determine the unique k-uniform supertree with the largest signless Laplacian spectral radius among all k-uniform supertrees with n vertices and pendent edges (vertices).
其他文献
We consider exceptional sets in the Waring-Goldbach problem for fifth powers.For example,we prove that all but O(N131/132) integers satisfying the necessary loc
We construct the Grothendieck rings of a class of 2n2 dimensional semisimple Hopf Algebras H2n2,which can be viewed as a generalization of the 8 dimensional Kac