【摘 要】
:
We present a high-efficiency tunable wide-angle multi-band reflective linear-to-linear (LTL) polarization converter,which is composed of an array of two L-shaped graphene patches with different sizes.In the mid-infrared region,the proposed converter can t
【机 构】
:
School of Medical Technology and Engineering,Henan University of Science and Technology,Luoyang 4710
论文部分内容阅读
We present a high-efficiency tunable wide-angle multi-band reflective linear-to-linear (LTL) polarization converter,which is composed of an array of two L-shaped graphene patches with different sizes.In the mid-infrared region,the proposed converter can transform x-polarized wave into y-polarized wave at four resonant frequencies.The polarization conversion ratios of the four bands reach 94.4%,92.7%,99.3%,and 93.1%,respectively.By carefully choosing the ge-ometric parameter,triple-band LTL polarization conversion can also be realized.The three polarization conversion ratios reach 91.50%,99.20%,and 97.22%,respectively.The influence of incident angle on the performances of the LTL po-larization converter is investigated,and it is found that our polarization converter shows the angle insensitivity.Also,the dynamically tunable properties of the proposed polarization converter are numerically studied by changing Fermi energy.All the simulation results are conducted by finite element method.
其他文献
The anisotropic magnetoresistances (AMRs) in single crystalline Co(6 nm)/SrTiO3(001) heterostructures from 5 K to 300 K with the current direction setting along either Co[100]or Co[110]are investigated in this work.The anomalous(normal) AMR is observed be
A strong chiral near-field plays significant roles in the detection,separation and sensing of chiral molecules.In this paper,a simple and symmetric metasurface is proposed to generate strong chiral near-fields with both circularly polarized light and line
The interaction between a permanent magnet (PM) assumed as a magnetic dipole and a flat high-temperature su-perconductor (HTS) is calculated by the advanced frozen-image model.When the dipole vertically moves above the semi-infinite HTS,the general analyt
A1N/GaN resonant tunneling diodes (RTDs) were grown separately on freestanding GaN (FS-GaN) substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy (PA-MBE).Room temperature negative differential resis-tance (NDR) was obtained under f
We theoretically provide a magnetic phase diagram for the single-layer (SL) CrBr3,which could be effectively tuned by both strain engineering and charge doping in SL-CrBr3.Through systematical first-principles calculations and Heisen-berg model Hamiltonia
We study the influence of the thermodynamic coefficients on transient negative capacitance for the Zr-doped HfO2(HZO) ferroelectric capacitors by the theoretical simulation based on the Landau-Khalatnikov (L-K) theory and experi-mental measurement of elec
Improving the emission performance of colloidal quantum dots (QDs) is of paramount importance for their applica-tions on light-emitting diodes (LEDs),displays and lasers.A highly promising approach is to tune the carrier recombination channels and lifetim
The magnetic anisotropy manipulation in the Sm3Fe5O12 (SmIG) films and its effect on the interfacial spin coupling in the CoFe/SmIG heterostructures were studied carefully.By switching the orientation of the Gd3Ga5O12 substrates from(111) to (001),the mag
The chemical reaction products of elemental sulfur (S),selenium (Se),and molecular hydrogen (H2) at high pressures and room temperature are probed by Raman spectroscopy.Two known compounds H2S and H2Se can be synthesized after laser heating at pressures l
Size and morphology are critical factors in determining the electrochemical performance of the supercapacitor ma-terials,due to the manifestation of the nanosize effect.Herein,different nanostructures of the CrN material are prepared by the combination of