论文部分内容阅读
提出了基于混合智能算法的组卷策略,将神经网络、改进遗传算法的计算优势与自动组卷数学模型相结合,以用户理想试卷中的试题参数作为神经网络的训练样本,对影响组卷效果的各项指标的权重进行自学习,将得到的权重矩阵用于遗传算法的适应度函数的设计中,并对遗传算法的编码方案、遗传算子进行了改进。实验结果表明,该算法可以有效地提高智能组卷的速度以及成功率。