论文部分内容阅读
为提高西安市ρ(PM2.5)及ρ(O3)预报准确率,更好地服务西安市预报预警工作,以CAMx模式预报结果为基础,结合中尺度WRF气象预报数据、ρ(PM2.5)及ρ(O3)观测数据,基于多元线性回归、岭回归、lasso回归、决策树、随机森林以及支持向量机6种机器学习优化模型,对西安市2019年PM2.5及O3模拟结果进行优化.结果表明:①CAMx模式对污染物的预报存在偏差,优化模型明显修正了CAMx模式的系统性偏差,提高了预报精度.②ρ(PM2.5)及ρ(O3)的均方根误差(RMSE)由174.00、37.