论文部分内容阅读
Unexpected noise in reservoir stochastic simulation realization may be too high to make the realization useful, especially when there is a lack of hard data. Through discussing the uncertainties, we present two ways to control the uncertainty ratio that is brought by the algorithm of stochastic simulation. By reasonably reducing the random value of the stochastic simulation result, the unexpected values introduced by the residual that associates with random series can be controlled. Another way when the data disperse unevenly is to control the stochastic simulation order by grouping the points that need to be simulated to make those points which can be simulated by more neighborhood hard data calculated first. Both methods do not go against the core stochastic simulation algorithm.
Unexpected noise in reservoir stochastic simulation realization may be too high to make the realization useful, especially when there is a lack of hard data. By reasonably reducing the random value of the stochastic simulation result, the unexpected values introduced by the residual that associates with random series can be controlled. Another way when the data disperse uneven to control the stochastic simulation order by grouping the points that need to be simulated to make those points which can be simulated by more neighborhood hard data calculated first. Both methods do not go against the core stochastic simulation algorithm.