无限时滞随机泛函微分方程的Razumikhin型定理

来源 :应用数学 | 被引量 : 0次 | 上传用户:damai123123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在无限时滞的随机泛函微分方程整体解存在的前提下,建立了一般衰减稳定性的Razumikhin型定理.在此基础上,基于局部Lipsehitz条件和多项式增长条件,得到了无限时滞随机泛函微分方程整体解的存在唯一性,以及具有一般衰减速率的P阶矩和几乎必然渐近稳定性定理.
其他文献
为求线性比试和问题的全局最优解,本文给出了一个分支定界算法.通过一个等价问题和一个新的线性化松弛技巧,初始的非凸规划问题归结为一系列线性规划问题的求解.借助于这一系列线
利用区域的变分,在一定条件下,讨论拟线性椭圆型方程-divA(x,u,Du)=f(x)弱解关于区域的稳定性.
讨论一类非线性发展方程具有非线性边界条件的初边值问题.在某些假设条件下,利用抛物型方程的最大值原理和凸性方法证明了其解在有限时间内具有爆破性质.
利用拓扑度理论和广义Halanay不等式研究了分布时滞反应扩散Hopfield神经网络的平衡点的存在性及全局指数稳定性.给出的判别指数稳定性的代数判据易于验证。具有广泛适用性.
利用离散广义Lyapunov方法和分段模糊Lyapunov函数并借助子系统的性质,解决了一类离散T-S广义模糊系统的模糊控制及模糊状态观测器设计问题,得出了离散T-S模型广义系统其极值
本文研究一类具有正解的反应扩散方程组的有限差分解法.构造了一个保持正性的差分格式.利用离散的最大值原理证明了差分格式解的非负性,有界性及差分格式的无条件稳定性.这些
研究了一类等距结点上的2一周期整(m1,…,mp;m1',…,mp')插值算子的逼近性质,通过引入辅助算子得到了该插值算子在L^p(R)(1≤p〈∞)空间的饱和阶与饱和类.
本文研究了由文[4]( KENNEDY D P.The term structure of interest rates as a Gaussian randomfield[J] .Mathematical Finance ,1994 ,4(3) :247-258 .)提出的利率期限结构模型
设 (是≥2)为n阶的染色数为k的连通图的集合.本文确定了 中具有极大无符号Laplace谱半径的图,即k=2时为完全二部图,k≥3时为Turan图.本文也讨论了 中的具有极小无符号Laplace谱半径
图G称为k-临界h-边-连通的,若h-λ(G)且对每个k顶点集{u1,…,uk}有λ(G-{u1…,ui})≤λ(G-{u1,…ui-1})-1,i≤k.若G是k-临界h-边-连通但不(k+1)-临界h-边-连通,则记之为(h^*,k^*)λ.本文证明了:存在