论文部分内容阅读
随着互联网技术飞速发展,信息过载问题日益严重,对个性化推荐系统的研究已成必然趋势。为了提高传统协同过滤算法的准确性,本文提出基于人口统计与惩罚函数的协同过滤算法,先引入惩罚函数缓解传统推荐算法的数据稀疏性问题,再引入人口统计信息来进一步减少数据稀疏性问题对预测结果带来的影响,从而提高预测的准确性。实验验证表明,提出的改进算法能有效提高协同过滤算法预测的准确率。