论文部分内容阅读
在图像识别领域,针对有监督方法的模型在标签数据不足时图像的识别效果不佳问题,提出一种基于生成对抗网络(GAN)的半监督方法模型,即结合了半监督生成对抗网络(SSGAN)和深度卷积生成对抗网络(DCGAN)的优点,并在输出层用softmax代替了sigmoid激活函数,从而建立半监督深度卷积生成对抗网络(SS-DCGAN)模型。首先,将生成样本定义为伪样本类别并用于引导训练;其次,采用半监督的训练方式对模型的参数进行更新;最后,实现对异常(脑梗死)图像的识别。实验结果表明,SS-DCGAN模型在标签数