论文部分内容阅读
【摘要】 心房颤动是临床上最常见的心律失常,其发生和发展需要两大因素:触发因素和易感基质,其机制十分复杂。本文介绍了近来有关易感基质临床研究的成果:RAAS系统、CT和钆延长增强心肌核磁成像、自主神经系统、心内标测,为指导心房颤动的临床治疗提供新的思路。
【关键词】 心房颤动; 易感基质; 临床研究
【Abstract】 Atrial fibrillation(AF) is the most common cardiac arrhythmia in clinical practice.Occurrence and development of AF need two factors:trigger and susceptible substrate.Their mechanism is not understood utterly.This paper reviews achievement of susceptible substrate for AF,and provides new sight of treatment of AF.
【Key words】 Atrial fibrillation; Susceptible substrate; Clinical research
First-author’s address:Dalian Municipal Central Hospital,Dalian 116033,China
doi:10.3969/j.issn.1674-4985.2017.07.042
心房颤动是临床上最常见的心律失常。心房颤动患者的心力衰竭、卒中、死亡的风险增加,并且生活质量显著下降、经济负担持续增加。此外,心房颤动的发生率与年龄成正相关。我国正逐步进入老龄化社会,因此,心房颤动治疗的意义重大。心房颤动的发生和发展需要两个因素:触发因素和易感基质。心房肌细胞退行性变、心房间质纤维化、心房扩张、肥厚、心肌缺血等心房结构重构可导致子波在空间结构上的分离,易发生折返性心动过速,以上述为特征的易感性心房基质在心房颤动的发生和发展中起着重要作用[1]。本文试将近来有关心房颤动易感基质方面的临床研究成果进行综述。
1 细胞因子
多数研究提示:肾素-血管紧张素-醛固酮系统(renin-angiotensin-aldosterone system,RAAS)参与了心房颤动的发生发展过程。血管紧张素Ⅱ能引起血管收缩、增加后负荷、促进左心室肥厚,间接增加心房压力;能激活还原型辅酶Ⅱ氧化剂,启动氧化应激通路,引起炎症性胶原纤维沉积。新近研究发现血管紧张素转化酶-2过表达可能促进心房结构重构,而血管紧张素受体抑制剂可改善心房纤维化[2-3]。另一方面,动物实验和临床研究也证实血管紧张素Ⅱ可介导连接组织生长因子(connective tissus growth factor CTGF)表达增加,后者可能加重心房基质重构[4-5]。此外,新近的系列研究及meta分析显示RAAS基因中M235T的多态性可能与心房颤动的发生及导管消融术后复发的风险相关[6-8]。
既往研究发现细胞外胶原含量增加可导致心房间质纤维化,这与心房颤动的维持相关。细胞外胶原的合成和降解受金属基质蛋白酶(matrix metalloproteinase MMP)调节,基质金属蛋白酶抑制物(tissue inhibitor of metalloproteinase TIMP)表达下降可加重心房纤维化[9-10]。在一个动脉粥样硬化风险的公众研究中发现MMP-9表达增加与心房颤动事件的風险升高独立相关[11]。新近的一项Meta分析显示:MMP-1信使RNA水平显著升高与心房颤动相关,有统计学意义。循环中TIMP-2水平减少与心房颤动的风险增加显著相关。这提示特定MMP和TIMP可能是心房颤动风险增加的标记物[12]。
总的来说,因为这些细胞因子难以对心房颤动易感基质进行无创的组织学定量分析,因而难以在临床广泛开展,但是上述研究打开了心房颤动风险评估和治疗策略的新视野。
2 影像学
近年来,有研究显示钆延迟增强心肌核磁成像可用于定量评估心房纤维化,其原理是正常心肌和纤维化组织对钆对比剂的吸收和排泄动力学不同,最终在影像上形成的信号强度也不同[13]。对心房颤动患者进行钆延迟增强心肌核磁扫描,利用左心房纤维化定量/左心房壁体积百分比将心房纤维化严重程度分期,并对分期不同的心房颤动患者比较心房颤动的持续时间、导管消融后的复发率。结果发现,心房纤维化程度越高的患者,心房颤动持续时间越长、导管消融的复发率越高[14-15]。DECAAF研究也得出了相似的结果,并以此提出:根据纤维化的特点制定消融策略,对纤维化严重的患者建议仅采取药物治疗[16]。但是由于钆延迟增强心肌核磁成像自身的特点,也使它的广泛应用受到限制,如肾功能不全、心脏电子植入装置的患者不能耐受这种检查。图形的变异程度、成像质量及图像重建的算法等问题也制约这项检查[17-19]。
早期的研究显示可能由于脂肪细胞的浸润,破坏了细胞间的正常传导,导致传导的多样性,增加了折返、电学连接的紊乱性而导致心房颤动。新近,在大型动物和人的心房组织中发现,心外膜脂肪侵入心肌层下[20-21]。相关临床研究也显示,通过CT成像,发现心外膜脂肪可预测心房颤动风险;通过心脏核磁成像,发现了心外膜脂肪和心房颤动的严重性及导管消融术后的复发率相关[22-23]。因而,有研究试图通过心肌核磁检查对心外膜脂肪进行定量,更好地评估心外膜脂肪与心房颤动的关系[24]。
上述研究均试图通过无创的方法对心房纤维化和心外膜脂肪进行定量分析,而且,由于CT和核磁检查在临床的广泛应用,使得这些方法易于在临床大范围推广,所以这些可能是未来研究的方向之一。 3 自主神經系统
多数研究证实,心脏的自主神经系统与心房颤动触发和维持的关系复杂。心脏的自主神经系统定位于特定的心外膜脂肪垫和Marshall韧带中。因其解剖学位置的特殊性,心内膜刺激法不能对所有自主神经丛定位,所以单独消融自主神经丛的效果不理想。新近的一项研究中,对难治性高血压和交感兴奋型心房颤动患者,行肾交感神经切除和肺静脉隔离术,可大幅降低血压和术后1年内心房颤动的复发率[25]。这一结果提示对特殊类型的心房颤动患者联合肾交感神经治疗和肺静脉隔离术,可能收到意外的效果。因其样本量小,还需多中心研究结果来证实。
4 基质标测
Haissaguerre等在1998年发现了肺静脉的局部病灶可诱发心房颤动,这就是著名的局灶触发理论的基础。此后出现了大规模针对心房颤动易感基质的研究,从最初的导管探查到现在的三维标测,正逐渐提高持续性心房颤动导管消融的成功率。环肺静脉隔离是在三维电解剖标测系统指导下,建立肺静脉和左心房的模拟三维图像,分别于两侧肺静脉外口1~2 cm处做环状消融。它不仅隔离了来源于肺静脉的触发灶,而且改良了位于肺静脉外口的左心房易感基质,即破坏了心房颤动的维持机制。左房线性消融是借鉴心房颤动外科迷宫术,在左心房增加线性消融,将心房分为不同部分,即可终止左心房内折返。目前,多数研究也证实,左房线性消融术可以明显降低持续性心房颤动术后大折返性房速的发生。碎裂电图(complex fractionated atrial electrograms,CFAEs)可能是心房颤动维持的易感基质之一,对其消融可提高持续性心房颤动消融治疗的成功率。因各电生理中心对CFAEs的定义不同,记录及分析的方法有差异,术者的经验也时刻影响标测的结果,消融终点缺乏统一标准,消融造成的心房损伤更大,术后“医源性”心律失常发生率更高等多个问题,使CFAEs多作为消融的辅助措施。新近的一项多中心研究显示:对于持续性心房颤动的导管消融,单纯的环肺静脉隔离与环肺静脉隔离+左房线性消融及环肺静脉隔离+碎裂电位消融相比,三者的复发率无差异[26]。今后还需要更多的临床数据来评估各种导管消融术式的效果。
转子是指规则的功能性折返激动,可能是快速性心律失常和颤动的驱动灶。有研究显示心房重构增加心房传导的各向异性和心内膜与心外膜之间电学分离,而心内膜与心外膜之间的电学分离与转子相关[27-28]。有的电生理学者认为转子保持高度的稳定性[29],而另一些专家则提出在导管探查的时候,转子非常不稳定[30-31]。近期,文献[32-33]先后用多项观察结果验证了:通过特殊的高密度篮状电极标测出心房转子后对其进行消融,对心房损伤小、消融时间短;联合肺静脉隔离,可减少消融术后的晚期复发。但因该标测电极技术专利,而未能在临床广泛开展,所以缺乏大规模的临床对照结果。Haissaguerre等[31]利于体表252电极和胸廓CT扫描等无创方法,进行转子标测和消融,可以使75%早期的持续性心房颤动的患者转为窦性心律。随着新的探测设备及技术的不断研发,转子消融有可能成为一种新的心房颤动导管消融策略。
5 问题与展望
心房颤动是一种缓慢进展性的疾病,在疾病的发展过程中,可能有多种机制触发和维持心房颤动的发生和发展。结合多种评估方法,依据机制对各个心房颤动的内在特点进行分类,并在心房颤动发生发展的各个环节,去除危险因素、消除触发机制,阻止易感基质的进展,才能达到治愈心房颤动。
参考文献
[1] January C T,Wann L S,Alpert J S,et al.2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society[J].Journal of the American College of Cardiology,2014,64(21):e1-e76.
[2] Tingquan Zhou,Zhenglong Wang,Jinqi Fan,et al.Angiotensin-Converting enzyme-2 overexpression improves atrial remodeling and function in a canine model of atrial fibrillation[J].J Am Heart Assoc,2015,4(3):e001 530.
[3] Dongfang Yang,Jia Yuan,Gan Liu,et al.Angiotensin receptor blockers and statins could alleviate atrial fibrosis via regulating platelet-derived growth factor/rac1/nuclear factor-kappa B axis[J].Int J Med Sci,2013,10(7):812-824.
[4] Wen-Chin Ko,Chuang-Ye Hong,Shaw-Min Hou,et al.
Elevated expression of connective tissue growth factor in human atrial fibrillation and angiotensin Ⅱ-treated cardiomyocytes[J].Circ J,2011,75(7):1592-1600. [5] Kiryu M,Niwano S,Niwano H,et al.Angiotensin Ⅱ-mediated up-regulation of connective tissue growth factor promotes atrial tissue fibrosis in the canine atrial fibrillation model[J].Europace,2012,14(8):1206-1214.
[6] Topal N P,Ozben B,Hancer V S,et al.Polymorphisms of the angiotensin-converting enzyme and angiotensinogen gene in patients with atrial fibrillation[J].JRAAS,2011,12(4):549-556.
[7] Qunshan Wang,Xiaofeng Hu,Shuyuan Li,et al.Association of the angiotensinogen M235T polymorphism with recurrence after catheter ablation of acquired atrial fibrillation[J].JRAAS,2015,16(4):888-897.
[8] HuiXuan Wang,Yi Teng,Ke Wang,et al.The M235T polymorphism in the angiotensinogen gene and atrial fibrillation:a meta-analysis[J].JRAAS,2014,15(16):647-652.
[9] Spinale F C.Myocardial matrix remodeling and the matrix metalloproteinases:influence on cardiac form and function[J].Physiol Rev,2007,87(4):1285-1342.
[10] Kourliouros A,Savelieva I,Kiotsekoglou A,et al.Current concepts in the pathogenesis of atrial fibrillation[J].Am Heart J,2009,157(2):243-252.
[11] Huxley R R,Lopez F L,Maclehose R F,et al.Novel association between plasma matrix metalloproteinases-9 and risk of incident atrial fibrillation in a Case-Cohort Study:the atherosclerosis risk in communities study[J].PLoS one,2013,8(3):e59 052.
[12] Yuan Liu,Bin Xu,Na Wu,et al.Association of MMPs and TIMPs with the occurrence of atrial fibrillation:a systematic review and meta-analysis[J].Canadian Journal of Cardiology,2016,32(6):803-813.
[13] Seitz J,Horvilleur J,Lacotte J,et al.Correlation between AF substrate ablation difficulty and left atrial fibrosis quantified by delayed-enhancement cardiac magnetic resonance[J].Pacing Clin Electrophysiol,2011,34(10):1267-1277.
[14] Akoum N,Daccarett M,Mcgann C,et al.Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation:a DE-MRI guided approach[J].J Cardiovasc Electrophysiol,2011,22(1):16-12.
[15] McGann C,Akoum N,Patel A,et al.Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI[J].Circ Arrhythm Electrophysiol,2014,7(1):23-30.
[16] Marrouche N F,Wilber D,Hindricks G,et al.Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation:the DECAAF study[J].Jama,2014,311(5):498-506.
[17] Kellaman P,Arai A E.Cardiac imaging techniques for physicians:late enhancement[J].Journal J Magn Reson Imaging,2012,36(3):529-542. [18] Karim R,Housden R J,Balasubramaniam M,et al.Evaluation of current algorithms of segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium:an open-access grand challenge[J].J Cardiovasc Magn Reson,2013,15(1):105.
[19] Harriosn J L,Sohns C,Linton N W,et al.Repeat left atrial catheter ablation:cardiac magnetic resonance prediction of endocardial voltage and gaps in ablation lesion sets[J].Circ Arrhythm Electrophysiol,2015,8(2):270-278.
[20] Hatem S N,Sanders P.Epicardial adipose tissue and atrial fibrillation[J].Cardiovasc Res,2014,102(2):205-213.
[21] Mahajan R,Lau D H,Brooks A G,et al.Electrophysiological,electroanatomical,and structural remodeling of the atrial as consequences of sustained obesity[J].J Am Coll Cardiol,2015,66(1):1-11.
[22] Thanassoulis G,Massaro M,O’Donnell C J,et al.Pericardial fat is associated with prevalent atrial fibrillation;the Framingham Heart Study[J].Circ Arrhythm Electrophysiol,2010,3(4):345-350.
[23] Wong C X,Abed H S,Molaee P,et al.Pericardial fat is associated wwith atrial fibrillation severity and ablation outcome[J].J Am Coll Cardiol,2011,57(11):1745-1751.
[24] Mahajan R,Kuklik P,Grover S,et al.Cardiovascular magnetic resonance of total and atrial pericardial adipose tissue:a validation study and development of a 3 dimensional pericardial adipose tissue model[J].J Cardiovasc Moge Reson,2013,15(1):73.
[25] Pokushalov E,Romanov A,Corbucci G,et al.A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension[J].J Am Coll Cardiol,2012,60(13):1163-1170.
[26] Atul Verma,Chen-yang Jiang,Timothy R,et al.Approaches to Catheter Ablation for Persistent Atrial Fibrillation[J].N Engl J Med,2015,372(19):1812-1822.
[27] Eckstein J,Zeemering S,Linz D,et al.Transmural conduction is the predominant mechanism of breakthrough during atrial fibrillation:evidence from simultaneous endo-epicardial high-density activation mapping[J].Circ Arrhythm Electrophysiol,2013,6(2):334-341.
[28] Maesen B,Zeemering S,Afonso C,et al.Rearrangement of atrial bundle architecture and consequent changes in anisotropy of conduction constitute the 3-dimensional substrate for atrial fibrillation[J].Cir Arrhythm Electrophysiol,2013,6(5):967-975.
[29] Swarup V,Baykaner T,Rostamian A,et al.Stability of rotors and focal sources of human atrial fibrillation:focal impulse and rotor mapping(FIRM) of AF source and fibrillation conduction[J].J Cardiovasc Electrophysiol,2014,25(12):1284-1292. [30] Lee G,Kumar S,Teh A,et al.Epicardial wave mapping in human long-lasting persistent atrial fibrillation:transient rotational circuits,complex wave fronts,and disorganized activity[J].Eur Heart J,2014,35(2):86-97.
[31] Haissaguerre M,Hocini M,Denis A,et al.Driver domains in persistent atrial fibrillation[J].Circulation,2014,130(7):530-538.
[32] Narayan S M,Krummen D E,Shivkumar K,et al.Treatment of atrial fibrillation by the ablation of localized sources:CONFIRM(Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation Trial)[J].J Am Coll Cardiol,2012,60(7):628-636.
[33] Narayan S M,Baykaner T,Clopton P,et al.Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone:extended follow-up of the CONFIRM trial(Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation)[J].J Am Coll Cardiol,2014,63(17):1761-1768.
(收稿日期:2017-01-12) (本文編辑:程旭然)
【关键词】 心房颤动; 易感基质; 临床研究
【Abstract】 Atrial fibrillation(AF) is the most common cardiac arrhythmia in clinical practice.Occurrence and development of AF need two factors:trigger and susceptible substrate.Their mechanism is not understood utterly.This paper reviews achievement of susceptible substrate for AF,and provides new sight of treatment of AF.
【Key words】 Atrial fibrillation; Susceptible substrate; Clinical research
First-author’s address:Dalian Municipal Central Hospital,Dalian 116033,China
doi:10.3969/j.issn.1674-4985.2017.07.042
心房颤动是临床上最常见的心律失常。心房颤动患者的心力衰竭、卒中、死亡的风险增加,并且生活质量显著下降、经济负担持续增加。此外,心房颤动的发生率与年龄成正相关。我国正逐步进入老龄化社会,因此,心房颤动治疗的意义重大。心房颤动的发生和发展需要两个因素:触发因素和易感基质。心房肌细胞退行性变、心房间质纤维化、心房扩张、肥厚、心肌缺血等心房结构重构可导致子波在空间结构上的分离,易发生折返性心动过速,以上述为特征的易感性心房基质在心房颤动的发生和发展中起着重要作用[1]。本文试将近来有关心房颤动易感基质方面的临床研究成果进行综述。
1 细胞因子
多数研究提示:肾素-血管紧张素-醛固酮系统(renin-angiotensin-aldosterone system,RAAS)参与了心房颤动的发生发展过程。血管紧张素Ⅱ能引起血管收缩、增加后负荷、促进左心室肥厚,间接增加心房压力;能激活还原型辅酶Ⅱ氧化剂,启动氧化应激通路,引起炎症性胶原纤维沉积。新近研究发现血管紧张素转化酶-2过表达可能促进心房结构重构,而血管紧张素受体抑制剂可改善心房纤维化[2-3]。另一方面,动物实验和临床研究也证实血管紧张素Ⅱ可介导连接组织生长因子(connective tissus growth factor CTGF)表达增加,后者可能加重心房基质重构[4-5]。此外,新近的系列研究及meta分析显示RAAS基因中M235T的多态性可能与心房颤动的发生及导管消融术后复发的风险相关[6-8]。
既往研究发现细胞外胶原含量增加可导致心房间质纤维化,这与心房颤动的维持相关。细胞外胶原的合成和降解受金属基质蛋白酶(matrix metalloproteinase MMP)调节,基质金属蛋白酶抑制物(tissue inhibitor of metalloproteinase TIMP)表达下降可加重心房纤维化[9-10]。在一个动脉粥样硬化风险的公众研究中发现MMP-9表达增加与心房颤动事件的風险升高独立相关[11]。新近的一项Meta分析显示:MMP-1信使RNA水平显著升高与心房颤动相关,有统计学意义。循环中TIMP-2水平减少与心房颤动的风险增加显著相关。这提示特定MMP和TIMP可能是心房颤动风险增加的标记物[12]。
总的来说,因为这些细胞因子难以对心房颤动易感基质进行无创的组织学定量分析,因而难以在临床广泛开展,但是上述研究打开了心房颤动风险评估和治疗策略的新视野。
2 影像学
近年来,有研究显示钆延迟增强心肌核磁成像可用于定量评估心房纤维化,其原理是正常心肌和纤维化组织对钆对比剂的吸收和排泄动力学不同,最终在影像上形成的信号强度也不同[13]。对心房颤动患者进行钆延迟增强心肌核磁扫描,利用左心房纤维化定量/左心房壁体积百分比将心房纤维化严重程度分期,并对分期不同的心房颤动患者比较心房颤动的持续时间、导管消融后的复发率。结果发现,心房纤维化程度越高的患者,心房颤动持续时间越长、导管消融的复发率越高[14-15]。DECAAF研究也得出了相似的结果,并以此提出:根据纤维化的特点制定消融策略,对纤维化严重的患者建议仅采取药物治疗[16]。但是由于钆延迟增强心肌核磁成像自身的特点,也使它的广泛应用受到限制,如肾功能不全、心脏电子植入装置的患者不能耐受这种检查。图形的变异程度、成像质量及图像重建的算法等问题也制约这项检查[17-19]。
早期的研究显示可能由于脂肪细胞的浸润,破坏了细胞间的正常传导,导致传导的多样性,增加了折返、电学连接的紊乱性而导致心房颤动。新近,在大型动物和人的心房组织中发现,心外膜脂肪侵入心肌层下[20-21]。相关临床研究也显示,通过CT成像,发现心外膜脂肪可预测心房颤动风险;通过心脏核磁成像,发现了心外膜脂肪和心房颤动的严重性及导管消融术后的复发率相关[22-23]。因而,有研究试图通过心肌核磁检查对心外膜脂肪进行定量,更好地评估心外膜脂肪与心房颤动的关系[24]。
上述研究均试图通过无创的方法对心房纤维化和心外膜脂肪进行定量分析,而且,由于CT和核磁检查在临床的广泛应用,使得这些方法易于在临床大范围推广,所以这些可能是未来研究的方向之一。 3 自主神經系统
多数研究证实,心脏的自主神经系统与心房颤动触发和维持的关系复杂。心脏的自主神经系统定位于特定的心外膜脂肪垫和Marshall韧带中。因其解剖学位置的特殊性,心内膜刺激法不能对所有自主神经丛定位,所以单独消融自主神经丛的效果不理想。新近的一项研究中,对难治性高血压和交感兴奋型心房颤动患者,行肾交感神经切除和肺静脉隔离术,可大幅降低血压和术后1年内心房颤动的复发率[25]。这一结果提示对特殊类型的心房颤动患者联合肾交感神经治疗和肺静脉隔离术,可能收到意外的效果。因其样本量小,还需多中心研究结果来证实。
4 基质标测
Haissaguerre等在1998年发现了肺静脉的局部病灶可诱发心房颤动,这就是著名的局灶触发理论的基础。此后出现了大规模针对心房颤动易感基质的研究,从最初的导管探查到现在的三维标测,正逐渐提高持续性心房颤动导管消融的成功率。环肺静脉隔离是在三维电解剖标测系统指导下,建立肺静脉和左心房的模拟三维图像,分别于两侧肺静脉外口1~2 cm处做环状消融。它不仅隔离了来源于肺静脉的触发灶,而且改良了位于肺静脉外口的左心房易感基质,即破坏了心房颤动的维持机制。左房线性消融是借鉴心房颤动外科迷宫术,在左心房增加线性消融,将心房分为不同部分,即可终止左心房内折返。目前,多数研究也证实,左房线性消融术可以明显降低持续性心房颤动术后大折返性房速的发生。碎裂电图(complex fractionated atrial electrograms,CFAEs)可能是心房颤动维持的易感基质之一,对其消融可提高持续性心房颤动消融治疗的成功率。因各电生理中心对CFAEs的定义不同,记录及分析的方法有差异,术者的经验也时刻影响标测的结果,消融终点缺乏统一标准,消融造成的心房损伤更大,术后“医源性”心律失常发生率更高等多个问题,使CFAEs多作为消融的辅助措施。新近的一项多中心研究显示:对于持续性心房颤动的导管消融,单纯的环肺静脉隔离与环肺静脉隔离+左房线性消融及环肺静脉隔离+碎裂电位消融相比,三者的复发率无差异[26]。今后还需要更多的临床数据来评估各种导管消融术式的效果。
转子是指规则的功能性折返激动,可能是快速性心律失常和颤动的驱动灶。有研究显示心房重构增加心房传导的各向异性和心内膜与心外膜之间电学分离,而心内膜与心外膜之间的电学分离与转子相关[27-28]。有的电生理学者认为转子保持高度的稳定性[29],而另一些专家则提出在导管探查的时候,转子非常不稳定[30-31]。近期,文献[32-33]先后用多项观察结果验证了:通过特殊的高密度篮状电极标测出心房转子后对其进行消融,对心房损伤小、消融时间短;联合肺静脉隔离,可减少消融术后的晚期复发。但因该标测电极技术专利,而未能在临床广泛开展,所以缺乏大规模的临床对照结果。Haissaguerre等[31]利于体表252电极和胸廓CT扫描等无创方法,进行转子标测和消融,可以使75%早期的持续性心房颤动的患者转为窦性心律。随着新的探测设备及技术的不断研发,转子消融有可能成为一种新的心房颤动导管消融策略。
5 问题与展望
心房颤动是一种缓慢进展性的疾病,在疾病的发展过程中,可能有多种机制触发和维持心房颤动的发生和发展。结合多种评估方法,依据机制对各个心房颤动的内在特点进行分类,并在心房颤动发生发展的各个环节,去除危险因素、消除触发机制,阻止易感基质的进展,才能达到治愈心房颤动。
参考文献
[1] January C T,Wann L S,Alpert J S,et al.2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society[J].Journal of the American College of Cardiology,2014,64(21):e1-e76.
[2] Tingquan Zhou,Zhenglong Wang,Jinqi Fan,et al.Angiotensin-Converting enzyme-2 overexpression improves atrial remodeling and function in a canine model of atrial fibrillation[J].J Am Heart Assoc,2015,4(3):e001 530.
[3] Dongfang Yang,Jia Yuan,Gan Liu,et al.Angiotensin receptor blockers and statins could alleviate atrial fibrosis via regulating platelet-derived growth factor/rac1/nuclear factor-kappa B axis[J].Int J Med Sci,2013,10(7):812-824.
[4] Wen-Chin Ko,Chuang-Ye Hong,Shaw-Min Hou,et al.
Elevated expression of connective tissue growth factor in human atrial fibrillation and angiotensin Ⅱ-treated cardiomyocytes[J].Circ J,2011,75(7):1592-1600. [5] Kiryu M,Niwano S,Niwano H,et al.Angiotensin Ⅱ-mediated up-regulation of connective tissue growth factor promotes atrial tissue fibrosis in the canine atrial fibrillation model[J].Europace,2012,14(8):1206-1214.
[6] Topal N P,Ozben B,Hancer V S,et al.Polymorphisms of the angiotensin-converting enzyme and angiotensinogen gene in patients with atrial fibrillation[J].JRAAS,2011,12(4):549-556.
[7] Qunshan Wang,Xiaofeng Hu,Shuyuan Li,et al.Association of the angiotensinogen M235T polymorphism with recurrence after catheter ablation of acquired atrial fibrillation[J].JRAAS,2015,16(4):888-897.
[8] HuiXuan Wang,Yi Teng,Ke Wang,et al.The M235T polymorphism in the angiotensinogen gene and atrial fibrillation:a meta-analysis[J].JRAAS,2014,15(16):647-652.
[9] Spinale F C.Myocardial matrix remodeling and the matrix metalloproteinases:influence on cardiac form and function[J].Physiol Rev,2007,87(4):1285-1342.
[10] Kourliouros A,Savelieva I,Kiotsekoglou A,et al.Current concepts in the pathogenesis of atrial fibrillation[J].Am Heart J,2009,157(2):243-252.
[11] Huxley R R,Lopez F L,Maclehose R F,et al.Novel association between plasma matrix metalloproteinases-9 and risk of incident atrial fibrillation in a Case-Cohort Study:the atherosclerosis risk in communities study[J].PLoS one,2013,8(3):e59 052.
[12] Yuan Liu,Bin Xu,Na Wu,et al.Association of MMPs and TIMPs with the occurrence of atrial fibrillation:a systematic review and meta-analysis[J].Canadian Journal of Cardiology,2016,32(6):803-813.
[13] Seitz J,Horvilleur J,Lacotte J,et al.Correlation between AF substrate ablation difficulty and left atrial fibrosis quantified by delayed-enhancement cardiac magnetic resonance[J].Pacing Clin Electrophysiol,2011,34(10):1267-1277.
[14] Akoum N,Daccarett M,Mcgann C,et al.Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation:a DE-MRI guided approach[J].J Cardiovasc Electrophysiol,2011,22(1):16-12.
[15] McGann C,Akoum N,Patel A,et al.Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI[J].Circ Arrhythm Electrophysiol,2014,7(1):23-30.
[16] Marrouche N F,Wilber D,Hindricks G,et al.Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation:the DECAAF study[J].Jama,2014,311(5):498-506.
[17] Kellaman P,Arai A E.Cardiac imaging techniques for physicians:late enhancement[J].Journal J Magn Reson Imaging,2012,36(3):529-542. [18] Karim R,Housden R J,Balasubramaniam M,et al.Evaluation of current algorithms of segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium:an open-access grand challenge[J].J Cardiovasc Magn Reson,2013,15(1):105.
[19] Harriosn J L,Sohns C,Linton N W,et al.Repeat left atrial catheter ablation:cardiac magnetic resonance prediction of endocardial voltage and gaps in ablation lesion sets[J].Circ Arrhythm Electrophysiol,2015,8(2):270-278.
[20] Hatem S N,Sanders P.Epicardial adipose tissue and atrial fibrillation[J].Cardiovasc Res,2014,102(2):205-213.
[21] Mahajan R,Lau D H,Brooks A G,et al.Electrophysiological,electroanatomical,and structural remodeling of the atrial as consequences of sustained obesity[J].J Am Coll Cardiol,2015,66(1):1-11.
[22] Thanassoulis G,Massaro M,O’Donnell C J,et al.Pericardial fat is associated with prevalent atrial fibrillation;the Framingham Heart Study[J].Circ Arrhythm Electrophysiol,2010,3(4):345-350.
[23] Wong C X,Abed H S,Molaee P,et al.Pericardial fat is associated wwith atrial fibrillation severity and ablation outcome[J].J Am Coll Cardiol,2011,57(11):1745-1751.
[24] Mahajan R,Kuklik P,Grover S,et al.Cardiovascular magnetic resonance of total and atrial pericardial adipose tissue:a validation study and development of a 3 dimensional pericardial adipose tissue model[J].J Cardiovasc Moge Reson,2013,15(1):73.
[25] Pokushalov E,Romanov A,Corbucci G,et al.A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension[J].J Am Coll Cardiol,2012,60(13):1163-1170.
[26] Atul Verma,Chen-yang Jiang,Timothy R,et al.Approaches to Catheter Ablation for Persistent Atrial Fibrillation[J].N Engl J Med,2015,372(19):1812-1822.
[27] Eckstein J,Zeemering S,Linz D,et al.Transmural conduction is the predominant mechanism of breakthrough during atrial fibrillation:evidence from simultaneous endo-epicardial high-density activation mapping[J].Circ Arrhythm Electrophysiol,2013,6(2):334-341.
[28] Maesen B,Zeemering S,Afonso C,et al.Rearrangement of atrial bundle architecture and consequent changes in anisotropy of conduction constitute the 3-dimensional substrate for atrial fibrillation[J].Cir Arrhythm Electrophysiol,2013,6(5):967-975.
[29] Swarup V,Baykaner T,Rostamian A,et al.Stability of rotors and focal sources of human atrial fibrillation:focal impulse and rotor mapping(FIRM) of AF source and fibrillation conduction[J].J Cardiovasc Electrophysiol,2014,25(12):1284-1292. [30] Lee G,Kumar S,Teh A,et al.Epicardial wave mapping in human long-lasting persistent atrial fibrillation:transient rotational circuits,complex wave fronts,and disorganized activity[J].Eur Heart J,2014,35(2):86-97.
[31] Haissaguerre M,Hocini M,Denis A,et al.Driver domains in persistent atrial fibrillation[J].Circulation,2014,130(7):530-538.
[32] Narayan S M,Krummen D E,Shivkumar K,et al.Treatment of atrial fibrillation by the ablation of localized sources:CONFIRM(Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation Trial)[J].J Am Coll Cardiol,2012,60(7):628-636.
[33] Narayan S M,Baykaner T,Clopton P,et al.Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone:extended follow-up of the CONFIRM trial(Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation)[J].J Am Coll Cardiol,2014,63(17):1761-1768.
(收稿日期:2017-01-12) (本文編辑:程旭然)