论文部分内容阅读
为准确预测城轨实时进出站客流,构建基于非参数回归的实时进出站客流预测模型。首先,对不同特征日分时进出站客流量进行对比分析,据此构建历史数据库;其次,通过计算历史分时数据的相关系数,并设置阈值对分时客流数据间的相关性进行判断,从而确定合适的非参数模型状态向量;再次,根据K近邻样本与预测目标的客流量差异性,设计基于权重加权的预测算法;最后利用广州市城轨客流数据对预测模型进行精度分析,对全网站点多天的预测结果显示:全天平均绝对百分比误差均在2%以下,分时平均绝对百分比误差均在14%以下,表明模型具有较高的预测精