论文部分内容阅读
针对海底地形复杂程度分类问题,在考虑传统水深均值的基础上引入坡度和起伏度两个地形因子作为表征海底地形复杂程度的分类指标并进行量化,对水深数据空间分辨率进行统一,建立包含18种典型海底特征的海底地形复杂度分类库,利用BP神经网络对建立的分类库进行训练学习。为验证该方法的有效性和适用性,选取地形复杂度不同的4块实验区分别采用统计学方法和BP神经网络算法进行海底地形复杂度进行分类,对比发现该方法可以实现海区海底平坦、一般、复杂三种地形的自动识别与分类,并保留实验区海底地形复杂度细节信息。