论文部分内容阅读
俗话说:“好的开始是成功的一半”。一节好数学课的课堂导入就好比“凤头”,新颖的导语,巧妙的导入,一开始就能吸引住学生,点燃学生智慧的火花,使学生的思维进入状态,主动地去获取知识。因此,如何设计课堂导入,吸引学生的注意力,激发学生的学习兴趣已成为中学数学教师迫切需要研究的问题。
初中数学 导入法
导入就好比新课开始前的一个“序幕”,是教师引导学生进入良好学习状态的一种教学方法和艺术. 一个好的有效的导入,不但可以为课堂营造一种和谐愉悦的气氛,更能提高学生学习的情绪,激活学生的思维能力,为数学的课堂教学奠定一定的基础.
一、温固知新导入法
温固知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲切割定理时,先复习相交弦定理内容及证明,即 “圆”内两条相交弦被交点分成的两条线段长的积相等。然后移动两弦使其交点在圆外有三种情况。这样学生较易理解切割线定理、推论的数学表达式,在此基础上引导学生叙述定理内容,并总结圆幂定理的共同处是表示线段积相等。区别在于相交弦定理是交点内分线段,而切割线定理,推论是外分线段、切线上定理的两端点重合。这样导入,学生能从旧知识的复习中,发现一串新知识,并且掌握了证明线段积相等的方法。
二、类比导入法
在講相似三角形性质时,可以从全等三角形性质为例类比。全等三角形的对应边、对应角、对应线段、对应周长等相等。那么相似三角形这几组量怎么样?这种方法使学生能从类推中促进知识的迁移,发现新知识。
三、趣味情景导入法
数学来源于生活,又必须回归到生活中去。学生学习的数学知识能解决生活中问题,才能为学生所喜欢。生活化的数学内容,能够赋予数学足够的活力与灵性。通过一个现实的生活情景,在轻松愉快的气氛中把教学的难点解决了,不仅降低了问题的难度,而且可以把数学思想潜移默化地传授给学生,避免了生硬的说教,激发了学生的学习兴趣,加深了学生对问题的理解。要克服数学课堂知识的教学活动的枯燥,教师如果在课堂上创设一些与学习内容相关的、能巧妙地把学习内容蕴含其中的、学生喜闻乐见的趣味问题,就能激发学生参与学习的积极性,能使学生在玩中学习,在乐中思考,使教学收到事半功倍的效果。数学教学的“最近发展区”是指学生的潜在发展水平。在这个水平上,学生还不能独立地完成学习任务,但经启发、帮助、点拨和自己的努力,就能完成任务。就好比一个平常人,如果没有台阶,就是用一年时间也难以直接登上四层大楼,而有了台阶,登上十层楼对平常人也非难事。知识的掌握和思维的发展也正是如此。
四、生活情境导入法
数学起源于日常生活和生产实际,而生活实例又生动具体,利用现实生活中的具体实例分析和揭示事物的一般规律,是探求知识的重要途径,也是引入课程的良好方法。数学教学必须从学生熟悉的生活场景和感兴趣的事物出发,让学生有更多的机会从周围熟悉的事物中感悟和理解数学,体会到数学就在身边,感受数学的趣味和作用,领略数学的无穷魅力。
五、演示教具导入法
演示教具导入法能使学生把抽象的东西,通过演示教具形象、具体、生动、直观地掌握知识。例如:在讲弦切角定义时,先把圆规两脚分开,将顶点放在事先在黑板上画好的圆上,让两边与园相交成圆周角∠ BAC,当∠BAC的一边不动,另一边AB绕顶点A旋转到与圆相切时,让学生观察这个角的特点,是顶点在圆上一边与圆相交,另一边与圆相切。它与圆周角不同处是其中一条边是圆的切线。这种教学方法,使学生印象深,容易理解,记得牢。
六、强调式导入法
根据中学生对有意义的东西感兴趣的特点,一上课就叙述本课或本章的重要性的一种方法。例如:三角形是平面几何的重点,而圆是平面几何重点的重点,它在中考试题中占有重要地位,是将来学习深造的基础。今天,我们就学习,第七章圆。总之,数学的导入法很多,其关键就是要创造最佳的课堂气氛和环境,充分调动内在积极因素,激发求知欲,使学生处于精神振奋状态,注意力集中,为学生能顺利接受新知识创造有利的条件。
七、实验导入法
实验导入法是指教师通过直观教具演示引导学生一动手试验而巧妙的引入新课的一种方法。一位数学家说过:“抽象的道理是重要的,但要用一切办法使它们能看的见摸的着。”实验导入新课直观生动,效果非凡。通过实验演示导入能将教学内容具体化形象化,有利于学生从形象思维过渡到抽象思维,增强学生的感性认识。学生自己动手试验,必然会引起学生的浓厚兴趣,从而活跃课堂气氛,使学生很快进入良好的学习状态。
八、实例导入法
实例导入是选取与所授内容有关的生活实例或某种经历,通过对其分析,引申,演绎归纳出从特殊到一般、从具体到抽象的规律来导入新课.这种导入强调了实践性,能使学生产生亲切感,起到触类旁通之功效。同时让学生感觉到现实世界中处处充满数学。这种导入类型也是导入新课的常用方法,尤其对于抽象概念的讲解,采用这种方法更显得优越。
总之,数学教学如何导入新课,也不仅仅局限于上述几种方法,比如:开门见山法,故事导入法,游戏导入法,音乐导入法,热点导入法,图片导入法等等各种方法也可以相互融合、交叉使用,不必拘泥于某种模式。教学有法,而教无定法,关键在于教师怎样去把握它、运用它,充分调动起学生学习的积极性、主动性,这样才能把数学课讲深、讲透、讲活。以此来激发学生强烈的求知欲,如果教师“导”得有方,学生就会学得有趣,也就乐于学.使学生变“被动”为“主动”,变“苦学”为“乐学”,变“学会”为“会学”.并能引起学生的积极思维,能够引起学生的注意,产生强烈的求知欲,使学生的情感上升到最佳学习状态,从而全面提高学生的数学能力. 通过导入,使学生在课堂上最终达到集中注意力,激发求知欲,明确学习任务,形成学习期待的目的。
初中数学 导入法
导入就好比新课开始前的一个“序幕”,是教师引导学生进入良好学习状态的一种教学方法和艺术. 一个好的有效的导入,不但可以为课堂营造一种和谐愉悦的气氛,更能提高学生学习的情绪,激活学生的思维能力,为数学的课堂教学奠定一定的基础.
一、温固知新导入法
温固知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲切割定理时,先复习相交弦定理内容及证明,即 “圆”内两条相交弦被交点分成的两条线段长的积相等。然后移动两弦使其交点在圆外有三种情况。这样学生较易理解切割线定理、推论的数学表达式,在此基础上引导学生叙述定理内容,并总结圆幂定理的共同处是表示线段积相等。区别在于相交弦定理是交点内分线段,而切割线定理,推论是外分线段、切线上定理的两端点重合。这样导入,学生能从旧知识的复习中,发现一串新知识,并且掌握了证明线段积相等的方法。
二、类比导入法
在講相似三角形性质时,可以从全等三角形性质为例类比。全等三角形的对应边、对应角、对应线段、对应周长等相等。那么相似三角形这几组量怎么样?这种方法使学生能从类推中促进知识的迁移,发现新知识。
三、趣味情景导入法
数学来源于生活,又必须回归到生活中去。学生学习的数学知识能解决生活中问题,才能为学生所喜欢。生活化的数学内容,能够赋予数学足够的活力与灵性。通过一个现实的生活情景,在轻松愉快的气氛中把教学的难点解决了,不仅降低了问题的难度,而且可以把数学思想潜移默化地传授给学生,避免了生硬的说教,激发了学生的学习兴趣,加深了学生对问题的理解。要克服数学课堂知识的教学活动的枯燥,教师如果在课堂上创设一些与学习内容相关的、能巧妙地把学习内容蕴含其中的、学生喜闻乐见的趣味问题,就能激发学生参与学习的积极性,能使学生在玩中学习,在乐中思考,使教学收到事半功倍的效果。数学教学的“最近发展区”是指学生的潜在发展水平。在这个水平上,学生还不能独立地完成学习任务,但经启发、帮助、点拨和自己的努力,就能完成任务。就好比一个平常人,如果没有台阶,就是用一年时间也难以直接登上四层大楼,而有了台阶,登上十层楼对平常人也非难事。知识的掌握和思维的发展也正是如此。
四、生活情境导入法
数学起源于日常生活和生产实际,而生活实例又生动具体,利用现实生活中的具体实例分析和揭示事物的一般规律,是探求知识的重要途径,也是引入课程的良好方法。数学教学必须从学生熟悉的生活场景和感兴趣的事物出发,让学生有更多的机会从周围熟悉的事物中感悟和理解数学,体会到数学就在身边,感受数学的趣味和作用,领略数学的无穷魅力。
五、演示教具导入法
演示教具导入法能使学生把抽象的东西,通过演示教具形象、具体、生动、直观地掌握知识。例如:在讲弦切角定义时,先把圆规两脚分开,将顶点放在事先在黑板上画好的圆上,让两边与园相交成圆周角∠ BAC,当∠BAC的一边不动,另一边AB绕顶点A旋转到与圆相切时,让学生观察这个角的特点,是顶点在圆上一边与圆相交,另一边与圆相切。它与圆周角不同处是其中一条边是圆的切线。这种教学方法,使学生印象深,容易理解,记得牢。
六、强调式导入法
根据中学生对有意义的东西感兴趣的特点,一上课就叙述本课或本章的重要性的一种方法。例如:三角形是平面几何的重点,而圆是平面几何重点的重点,它在中考试题中占有重要地位,是将来学习深造的基础。今天,我们就学习,第七章圆。总之,数学的导入法很多,其关键就是要创造最佳的课堂气氛和环境,充分调动内在积极因素,激发求知欲,使学生处于精神振奋状态,注意力集中,为学生能顺利接受新知识创造有利的条件。
七、实验导入法
实验导入法是指教师通过直观教具演示引导学生一动手试验而巧妙的引入新课的一种方法。一位数学家说过:“抽象的道理是重要的,但要用一切办法使它们能看的见摸的着。”实验导入新课直观生动,效果非凡。通过实验演示导入能将教学内容具体化形象化,有利于学生从形象思维过渡到抽象思维,增强学生的感性认识。学生自己动手试验,必然会引起学生的浓厚兴趣,从而活跃课堂气氛,使学生很快进入良好的学习状态。
八、实例导入法
实例导入是选取与所授内容有关的生活实例或某种经历,通过对其分析,引申,演绎归纳出从特殊到一般、从具体到抽象的规律来导入新课.这种导入强调了实践性,能使学生产生亲切感,起到触类旁通之功效。同时让学生感觉到现实世界中处处充满数学。这种导入类型也是导入新课的常用方法,尤其对于抽象概念的讲解,采用这种方法更显得优越。
总之,数学教学如何导入新课,也不仅仅局限于上述几种方法,比如:开门见山法,故事导入法,游戏导入法,音乐导入法,热点导入法,图片导入法等等各种方法也可以相互融合、交叉使用,不必拘泥于某种模式。教学有法,而教无定法,关键在于教师怎样去把握它、运用它,充分调动起学生学习的积极性、主动性,这样才能把数学课讲深、讲透、讲活。以此来激发学生强烈的求知欲,如果教师“导”得有方,学生就会学得有趣,也就乐于学.使学生变“被动”为“主动”,变“苦学”为“乐学”,变“学会”为“会学”.并能引起学生的积极思维,能够引起学生的注意,产生强烈的求知欲,使学生的情感上升到最佳学习状态,从而全面提高学生的数学能力. 通过导入,使学生在课堂上最终达到集中注意力,激发求知欲,明确学习任务,形成学习期待的目的。