论文部分内容阅读
针对高维数据的特点并基于线性回归模型,利用变量选择降维技术,提出了一种新的、有效的变量选择(或称特征提取)的正则化估计方法.新的正则化估计方法主要考虑了数据的噪声(方差)对正则化估计的影响,在寻找估计的正则化路径时能对方差进行有效估计,且基于凸优化问题的KKT条件和坐标算法思想给出了正则化估计算法的实施细节.实验结果表明,该方法能够提高高维数据集进行估计和变量选择的准确性,是高维数据挖掘中新的、有效的特征提取方法.