Cation-vacancy induced Li+ intercalation pseudocapacitance at atomically thin heterointerface for hi

来源 :能源化学 | 被引量 : 0次 | 上传用户:zhao2345
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
It is challenging to create cation vacancies in electrode materials for enhancing the performance of rechargeable lithium ion batteries(LIBs).Herein,we utilized a strong alkaline etching method to success-fully create Co vacancies at the interface of atomically thin Co3-xO4/graphene@CNT heterostructure for high-energy/power lithium storage.The creation of Co-vacancies in the sample was confirmed by high-resolution scanning transmission electron microscope(HRSTEM),X-ray photoelectron spectroscopy(XPS)and electron energy loss near-edge structures(ELNES).The obtained Co3-xO4/graphene@CNT deliv-ers an ultra-high capacity of 1688.2 mAh g-1 at 0.2 C,excellent rate capability of 83.7%capacity retention at 1 C,and an ultralong life up to 1500 cycles with a reversible capacity of 1066.3 mAh g-1.Reaction kinetic study suggests a significant contribution from pseudocapacitive storage induced by the Co-vacancies at the Co3-xO4/graphene@CNT interface.Density functional theory confirms that the Co-vacancies could dramatically enhance the Li adsorption and provide an additional pathway with a lower energy barrier for Li diffusion,which results in an intercalation pseudocapacitive behavior and high-capacity/rate energy storage.
其他文献
The sluggish four-electron transfer of the oxygen evolution reaction(OER)limits the performance of water electrolyzers.Hence,OER electrocatalysts based on earth-abundant elements are urgently needed.Heteroatom doping has been an efficient approach to boos
Conversion-type reaction anode materials with high specific capacity are attractive candidates to improve lithium ion batteries(LIBs),yet the rapid capacity fading and poor rate capability caused by drastic vol-ume change and low electronic conductivity g
MXenes are a family of two-dimensional(2D)transition metal carbides,carbonitrides/nitrides with supe-rior physical and chemical properties,which have attracted extensive attention since the discovery in 2011.The impressive electrochemical activity of MXen
Electronic structures,which play a key role in determining electrical and optical properties of π-conjugated organic materials,have attracted tremendous interest.Efficient thermoelectric(TE)conver-sion of organic materials has rigorous requirements on ele
Heterogeneously catalyzed hydrolytic dehydrogenation of ammonia borane is a remarkable structure sen-sitive reaction.In this work,a strategy by using polyoxometalates(POMs)as the ligands is proposed to engineer the surface and electronic properties of Pt/
The existence of defects in perovskite films is a major obstacle that prevents perovskite solar cells(PSCs)from high efficiency and long-term stability.A variety of additives have been introduced into perovskite films for reducing the number of defects.Le
The rational design of oxygen vacancies and electronic microstructures of electrode materials for energy storage devices still remains a challenge.Herein,we synthesize nickel cobalt-based oxides nanoflower arrays assembled with nanowires grown on Ni foam
In recent years,Cu2ZnSnS4 (CZTS) semiconductor materials have received intensive attention in the field of thin-film solar cells owing to its non-toxic and low-cost elements.In this work,double-pressure sput-tering technology is applied to obtain highly e
Safety issue of lithium-ion batteries(LIBs)such as fires and explosions is a significant challenge for their large scale applications.Considering the continuously increased battery energy density and wider large-scale battery pack applications,the possibi
Energy band structure and interfacial compatibility of heterojunctions are crucial for photocatalysts in promoting photogenerated charge separation and transfer.Here,a combined strategy of vacancy engi-neering and quantum effect via a facile phosphating p