论文部分内容阅读
心脏起搏器、脑起搏器、神经刺激器等植入式电子医疗器件的工作寿命受限于电池容量.为了解决植入式电子医疗器件的供能问题,本文设计研制出了一种可将器官运动的机械能(心跳、肺呼吸等)转化为电能的供能器件-植入式摩擦纳米发电机.此发电机为接触分离的工作模式,在外力的作用下使具有微纳结构的聚二甲基硅氧烷(PDMS)薄膜和铝片发生摩擦而产生电能.器件大小1.2 cm×1.2 cm,采用生物相容性良好的材料PDMS进行全封装.实验表明其体外开路电压和短路电流的值分别为12 V,0.25μA,峰值功率密度为8.44 mW/m~2.植入到小鼠左胸皮下位置开路电压和短路电流为3.73 V,0.14μA.将此发电机和电源管理系统集成后用于植入式电子医疗器件的能源供给,有望实现植入式电子医疗器件的自驱动.
The working life of implantable electronic medical devices, such as pacemakers, pacemakers and neurostimulators, is limited by the battery capacity.In order to solve the problem of power supply for implantable electronic medical devices, Transplantation of mechanical energy (heartbeat, lung respiration, etc.) into electrical energy - the implantable friction nano-generator, is a contact-separation mode of operation in which the force of an external force causes the poly Dimethyl siloxane (PDMS) film and aluminum friction generated electric energy.The device size of 1.2 cm × 1.2 cm, the use of good biocompatibility PDMS material package.Experiments showed that the open circuit voltage in vitro and short-circuit current The values were 12 V, 0.25 μA, and 8.44 mW / m 2 peak power density respectively.The open circuit voltage and short-circuit current of 3.73 V, 0.14 μA implanted into the left subcutaneous hemisphere of mice.The generator and power management system were integrated After the energy used for implantable electronic medical devices is expected to achieve self-driven implantable electronic medical devices.