论文部分内容阅读
为提高微网短期负荷预测的效率和精度,针对微网负荷基数小,波动性和随机性大,历史数据相对短缺的特点,在负荷点空间尺度上,提出一种基于相似日和LS-SVM微网短期负荷预测方法。该方法在预测空间尺度和样本选择上有别于大电网,充分考虑气象因素的累积效应、短期负荷的连续性和周期性以及时间距离的“饱和效应”,形成一种新的相似日评价函数来选取训练样本,并结合短期负荷预测的特点形成LS-SVM的输入量,然后将训练好的模型用于预测。算例表明,该方法有效可行,精度较高,且比较实用。