论文部分内容阅读
Plant respiration is characterized by two pathways for electron transfer to O2, namely the cytochrome path-way (CP) that is linked to ATP production, and the alteative pathway (AP), where electrons from ubiquinol are directly transferred to O2 via an alteative oxidase (AOX) without concomitant ATP production. This latter pathway is well suited to dispose of excess electrons in the light, leading to optimized photosynthetic performance. We have characterized T-DNA-insertion mutant lines of Arabidopsis thaliana that do not express the major isoform, AOXIA. In standard growth conditions, these plants did not show any phenotype, but restriction of electron flow through CP by antimycin A, which induces AOX1A expression in the wild-type, led to an increased expression of AOX1D in leaves of the aox1a-knockout mutant. Despite the increased presence of the AOX1D isoform in the mutant, antimycin A caused inhibition of photosyn-thesis, increased ROS, and ultimately resulted in amplified membrane leakage and necrosis when compared to the wild-type, which was only marginally affected by the inhibitor. It thus appears that AOX1D was unable to fully compensate for the loss of AOX1A when electron flow via the CP is restricted. A combination of inhibition studies, coupled to metabolite profiling and targeted expression analysis of the P-protein of glycine decarboxylase complex (GDC), suggests that the aox1a mutants attempt to increase their capacity for photorespiration. However, given their deficiency, it is intriguing that increase in expression neither of AOX1D nor of GDC could fully compensate for the lack of AOX1A to optimize pho-tosynthesis when treated with antimycin A. We suggest that the aox1a mutants can further be used to substantiate the current models conceing the influence of mitochondrial redox on photosynthetic performance and gene expression.