论文部分内容阅读
At present,optical autonomous navigation has become a key technology in deep space exploration programs.Recent studies focus on the problem of orbit determination using autonomous navigation,and the choice of filter is one of the main issues.To prepare for a possible exploration mission to Mars,the primary emphasis of this paper is to evaluate the capability of three filters,the extended Kalman filter(EKF),unscented Kalman filter(UKF) and weighted least-squares(WLS) algorithm,which have different initial states during the cruise phase.One initial state is assumed to have high accuracy with the support of ground tracking when autonomous navigation is operating; for the other state,errors are set to be large without this support.In addition,the method of selecting asteroids that can be used for navigation from known lists of asteroids to form a sequence is also presented in this study.The simulation results show that WLS and UKF should be the first choice for optical autonomous navigation during the cruise phase to Mars.
At present, the optical autonomous navigation has become a key technology in deep space exploration programs. Recent studies focus on the problem of orbit determination using autonomous navigation, and the choice of filter is one of the main issues. To prepare for a possible exploration mission to Mars, the primary emphasis of this paper is to evaluate the capability of three filters, the extended Kalman filter (EKF), unscented Kalman filter (UKF) and weighted least-squares (WLS) algorithm, which have different initial states during the cruise phase .One initial state is assumed to have high accuracy with the support of ground tracking when autonomous navigation is operating; for the other state, errors are set to be large without this support.In addition, the method of selecting asteroids that can be used for navigation from known lists of asteroids to form a sequence is also presented in this study. simulation results show that WLS and UKF should be the first choice for optical autonomous navigatio n during the cruise phase to Mars.