论文部分内容阅读
采用当前方法检测火电机组轴承表面细小缺陷未对高效分离背景图像和缺陷特征,导致检测细小缺陷时,检测所用的时间较长,得到的检测结果与实际不符,存在检测效率低和误检率高的问题。提出火电机组轴承表面细小缺陷深度检测方法。通过形态学滤波算法去除火电机组轴承表面图像中存在的噪声,利用曲线拟合方法实现火电机组轴承表面图像的背景估计,通过最大熵分割法火电机组轴承图像进行二值化处理,使背景图像和缺陷特征高效分离;在此基础上,火电机组轴承表面缺陷目标,通过深度置信网络在逐层学习模型的基础上实现火电机组轴承表面细小缺陷的