论文部分内容阅读
提出了基于支持向量机的水田田埂边界线的检测算法。采用支持向量机分类算法代替传统的图像分割算法,分割水田图像,提高了在不同光照条件下田埂边界检测的鲁棒性。图像预处理阶段引入超像素分割算法,大大减少了后续图像处理的计算量,并为支持向量机的模型训练提供大量的样本。选取足够数量的超像素样本,提取其颜色特征和纹理特征,构成19维的特征向量,并作为训练支持向量机模型的输入。使用训练好的支持向量机模型识别新图像中的水田田埂区域,模型评价指标F1分数达到90. 7%。采用霍夫变换提取田埂边界,在NVIDIA的Jet