论文部分内容阅读
篇章关系分析是一种专门针对篇章语义关系及修辞结构进行分析与处理的自然语言理解任务。隐式篇章关系分析是其中重要的研究子任务,要求在显式关联线索缺失的情况下,自动检测特定论元对之间的语义关系类别。目前,隐式篇章关系分析性能较低,主流检测方法的准确率仅约为40%。造成这一现状的主要原因是:现有方法脱离论元的语义框架进行关系分析与检测,仅仅局限于特定论元特征的关联分析。针对这一问题,该文提出一种基于框架语义的隐式篇章关系推理方法,这一方法有效利用了框架语义知识库(即FrameNet)和相关识别技术,实现了论元语义