论文部分内容阅读
对高维的特征集进行降维是文本分类过程中的一个重要环节。在研究了现有的特征降维技术的基础上,对部分常用的特征提取方法做了简要的分析,之后结合类间集中度、类内分散度和类内平均频度,提出了一个新的特征提取方法,即CDF方法。实验采用K-最近邻分类算法(KNN)来考查CDF方法的有效性。结果表明该方法简单有效,能够取得比传统特征提取方法更优的降维效果。