论文部分内容阅读
利用热图时序特征和PNN,提出了一种以像素为单位,实现缺陷红外无损检测的新方法。该方法首先采用红外热像仪获取加热试件在降温过程中的红外时序热图;其次,提取时序热图中正常和异常区域的灰度值,建立不同区域的灰度值与时间的关系,进而获得相应的初始特征;再次,采用主成分分析方法对初始特征进行提取,获得时序特征;最后,以时序特征作为训练样本,构建概率神经网络,实现孔洞缺陷检测。实验结果表明,正常区和异常区识别率分别可达到95%和85%。